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FOREWORD -

Educators and the pubhic generally are increasingly vocal adout a phenome-
non which, they clanm, 1 becoming a national scandal. secondary school stu-
dents age Tess hnowledgeable about and less interested in higher mathematics  Some
people have suggested we need to experience a ational shock, on the order of
the 1957 shuck of the Soviet launch of Sputnik, to remind us of the value to our
nation of mathematics and seience education. '

At the same tme. atirition of the mathematies teaching corps is causing con-
cern. The concern 1s magnified by the realization that fewer university students
plan to become mathematics teachers. In order t reverse these trends, several plans
have been tried, ranging from paying mathematics teachers higher salaries to re-
tramning other teachers  equip them to teach secoidary school mathematics

This gloomy picture becomes bleaker sull when we realize that, according to
the National Assessment 4 Educational Progress, while mathematics is the fa-
vorite subject of 9-year-olds surveyed, 1iis theleast-preferied subject among 17-
vear-olds. What can be done to alter these conditions? -

Obviously, no single plan will change the direction of mathematics teaching
and learning. However. several initiatives sponsored by the federal government
are being undertahen W nitigate the current situtation. ‘The National Institute of
Educatton has supported and continues o support research projects which have
studied etfective strategies for teaching and learning in mathematics Although
much remains to be done m the arca of research, the crisis in secondary school
mathematies mahes t essential that we focus carefully on dissemination of ex-
isung research information.

What Is RDIS? 5

The Research and Development Interpretation Serviee (RDIS). a project funded
by the National Institute of Education, attenpts to bring to teachers the research
which they need. By focusing our efforts on answering questions which teachers
pose. we hope to help teachers ineet their most pressing needs. Of course, re-
search information requires mterpretation before it can be most effectively used
This interpretation is required for several reasons:

!
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® Researchens are not always cleat about the implications of their rescarch for
the classroom. i

® For a particular topie 1t s often difficult to get @ comprehensive view of all
the research that bears on that topic.

To date. RDIS. throigh its Research Within Readh serjes. has brought re-
search to teachers tn several basic skills areas  elementary school reading. ele-
mentary school mathematics, oral and written communication. and, now, in
secondary school mathematics.

How Does RDIS Work?

The fne detatls of development have varied for the four RDIS interpretive
works. but the overall process has remained true to the Project’s goat* to make it
pussible for teachers and researchers to listen to and understand each other

The process used to develop Research Within Reach: Secondary School
Mathematics llustrates how RDIS works. First. around 150 questions wers col-
fected m telephone nterviews of a national sampling of junior high and high school
teachers, Second. the RDIS staft met with the Mathematics Consultant Pancl to
review the questiony. The panel members--Dr. Mary Grace Kantowski. Dr. Rob-
ert Reys, and Dr. Manlyn Suydam--identified the topics which were represented
by the questions and for which there exists a research base for answers Next, lit-
erature searches were condiieted and first drafts completed. Those drafts were re-
viewed by the Consultant Panel and by other mathematics ¥ducators Their reviews
led t second drafts, and the process continued in this manner until the final drafts

avere completed and approved. &

How Can This Book Be Used?

Research Within Reach. Secondary School Mathematics can be used in a
number of ways. Each chapter begins With a question from a teacher. "The answer
s constructed so that research wformation and the classroom implications of that
research are clear. Very often. the chapter includes recommendations for class-
room practice. Each chapter concludes with a list of references on which the an-
swer 15 bastd and o which readers may go for a more thorough understanding of
the,parucular source, {Thowe réferences thought to be of special value for teach-
ers are marked with an asterisk *.)

_ kach chapter 1s written m such a way that it may be read independently from
the others. Winle this creates some repetition. itis our fecling that this provides
areater flextbilty both for the reader who wants to read about @ particular topic,
as well as for the reader who wants to survey the entire field. In any event. each
reader 1 invited to read the chapters in whatever order seems best to him or her

[ addition o tts obvious use for study by individuals. Research Within Reach
Secondary School Matmematics will prove uscful for pre-service and in-service
courses. Each chapter can be read ina relatively short time an¢ then can be used
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as a basts for discussion m the 60 vr 90 minutes periods which are often devoted
to m-service activities. In-service leaders might use the chapters as the basis for
the dudopmuu of chechlists of important research recommendations against which
teachers can analyze their teaching and students learning.

Suntlarly, teacher candidates wall find that the chapters may prepare them to
consider actual classroom practice in a way which they have not bclorc All'of
the recommended practices and much of the rescarch reported are grounded in
experience 1n redl classrooms, an environment with which many teacher candi-
dates remain relauvely unfamiliar throughout their college carcer

Finally. 1t 1s hoped that readers of Research Within Reach. Secondary School
Mathematics will tahe seriously the numerous invitations to replicate or validate
the research ited here, One topic that seems especially conducive to teacher ex-
perimentation ts the use of microcomputers. Although the available microcom-
puters research is cited m chapters where it is relevant, the body of recearch is
too small o warrant « separate chapter. That situation must and will change; the
topte 1s too tmpurtant. The dearth of research will be corrected. but in the mean-
ume. teachers” use of microcomputers will very much depend on the ingenuity
and good sense of individual teachers. Teachers willing to undertake classroom
research utilizing mucros can perform a service both to their students and to the
community of mathematics educators at large.

Classroom teachers work 1n environments rich with rescarch polcnlml While
1t 1s possiblie to view this call to rescarch as one more burden, it is also possible
(o View 1t as & way to gain a new understanding of how our students learn and
how we can be more effective teachers, It 1s our hope that Research Within Reach
Secondury School Mathemativs will help to ease the burden while it guides teach-
ers toward that new understanding.

David Holdzkom
Director
R&D Interpretation Service

Mark Driscoll
Research Associate
for Mathematics
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What does research say about the effect of factors beyond subject
content--for example, classroom configuration, teacher-student
communication and teacher behavior--on students’ learning of
mathematics in seconidary school? How do these factors affect
student attitudes toward learning mathematics?

In recent years, mathematies teaching has become a profession in erisis. While

- thg number of secondary school mathematics teachers dwindles to a dangerous

fevel, many who are leftan the ranks find themselves questioning their own com-
mtment to teaching. Among the more distressing questions they ask themsclves
1s one that pulls at the very root- of the profession: **Can the teacher really nnke
a difference in the mathematics classroom?”

The answer, pieced together from a series of recent research studies, is clearly
yes. No matter how teachers are identified as effective. whether by student
acinevement, by supervisors’ recommendations, or by tie testimony of students
and classroom observers, itis evident that eftective teachers of mathematics plan
and behave difterentty from less ef tective teachers. More importantly, they do so
w wdentifiable ways that can be learned by other inathematies teachers.

Too often. teacher training concentrates only on teacher behavior and ignores
the wiluencg;on that behavior of teacher attitudes, opinions, expectations, and
planmng. Yet rescarch clearly shows the strength of that influence, Consc-
gquently, tns report is divided. somewhat: loosely, into two parts: ways in which
effective and ingffectve teachers behave in the classroom, and aspects of their
(hii‘xking and planning that influence their behavior.

Effective Behavior

v

in their study of 7th and 8th grade teachers. Evertson, Emmer, and Brophy
were able to associate a certain style of class organization, used consistently. with
effective mathematics teaching. (7) The researchers used two criteria for effec-
tveness--student achievement and student ratings--and found that, on the aver-
age, the more ¢ffective teachers devoted about hail’ of each period to combined
joeture. demonstration, and discussion. On the other hand. the less effective
teachers used only about a fourth of each period for lecture. demonstration, and
discussion. and over a haif of each period for individual seatwork,

in another study of junior high mathematics classes, Evertson et al. found a
sinnlar pattern and were able to claborate on the teachers’ use of time: **the more
suceessful mathemates teachers spent more time in class discussion or lecture,
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they ashed more public yuestiuns (reating response upportunities), and response
vpportumties formed a greater proportion of their contacts with students They
dil not, however. have fewer private contacts. Rather, they were simply more
active,” (6. p. 54)

Questionng. The larger amount of time effective teachers spend with thir
entire Jass means they have a greater opportunity to ask questions. and question-
ashing appears to be an important factor in the effective waching of secondary
level mathematies. In particular. Evertson. Emmer, and Brophy noted that ef-
tective teachers ashed more so-called process questions (calling for explanations)
and also more product questions (calling for short answers) than did less effec-
tive teachers, and that they ashed nm:ore new questions after correct answers had
been given. A study of cassroom guestions ashed by geometry teachers showed
that students’ success i application tests in geometry is rclatcd to the frequency
of their teachers’ use of application questions in class. (8. 22)

A helpful discussion of the uses of classroom questioning is in Johnson and
Rismg. (12) Another good discussion of the roles and various uses of questions
i mathematics teaching appears in the chapter entitled *“Questioning™” in Didac -
tres amd Muthematies, a volume devoted to the teaching of middle school math-
ematies, (15) In particular, it pipoints more than cleven separate uses for teacher
questions, including:

1. To motrvate students to consider a new topic. (**What are some four-sided
geometric figures you can think of?"")

2, To challenge. (**What evidence do you have for thinking that?™")

3, To provoke student mnteraction. (**Bill, do you agree with what Martha
said?™)

4. To get students to evaluate. (**How do you lhmk your method would work
on this next problem?™)

3. To focus on process. (**What method did you use on that problem?™”)

6. To gude. (**Do you remember a problem similar to this one?)

7. To diagnose. (**llow did you get that answer?™)

8. To review. (" What are some of the things you've learned so far about tri-
angles?)

9. To encourage exploraton. (**Can you find a pattern in those numbers?*”)

10. To nvite student questions. (**What questions does this information leave

unanswered?™") )

Il. To enhance transfer. (**How could you use that result in this new situa-

tion?"") )

Whle the quanuty and vanety of classroom teacher questivns scem essential
w teacher effectiveness. so dues the control of wait-time between guestions and
answers--both the pause following a teacher’s question and the pause following a

. student’s response. In fact, Good’s research in junior high classrooms, has re-

vealed that many teachers wait less time fur their low-achieving students to re-
spond to questivns than they do for igher-achieving students, and that, in general,
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they provide these students fewer chanees to participate in public discussions ()]
. the end. Good maintains, most of these negiected students become totally.pas-
sive learners.

Encounragement. ‘Effective tcachers try to keep most of their students--low
achievers as well as high achievers--from slipping into passive learning. The ef-
fective junior ngh mathemates teachers observed by Evertson, Emmer, and Brophy
were more ehcouraging and more receptive o student input than were their less
effecuve colleagues, (7) In another study. Evertson ef al. also noted that the higher
the manber of student-mitiated questions and comments, the higher was student
achicvement in mathematics. (6)

As a result of his concern that so many students fall intoa totally passive state
of learning, Good recommends that “'teachers who want to monitor and crea-
uvely exanne their own behavior in order to reduce inappropriate behavior would
do well to develop strategies for cucouraging students to seek information as
needed.” (9. p. 419) If students are consistently dented such encouragement,:the
results can be disastrous, for, as we note in the Research Within Reach chapters
“*Understanding Fractions. A Prercquisite for Success in Secondary School
Mathemates™ and **Communicating Mathematics™. rescarch shows that by the
time they reach high school. many students have acquired deep. enduring, yet
nearly 1nvisible. nusconceptions about mathematics that seriously impair their
learning and-enjoyment of the subject in high school.

The basic strategy for teachers to develop, of course, is the consistent en-
couragement and reinforcement of questions and requests for help. Beyond that,
it is a mater of setting a tonc and a dynamic in classroom discussions which al-
jow students to be curious and which lead them to ask questions.

Modeling. As the picture of teacher effectiveness wiifolds from rescarch, it is
clear thatat 1s riot only through such direct means as asking questions, generating
questions, and offering crcouragement that teachers make their teaching more
effective. Indirect means are also important, such as the teacher’s own modeling

. of good Iearning behavior. Evertson, Emmer, and Brophy noted that more effec-

tive teachers “engaged in more problem-solving behavior™ in their study. (7. p.
173) Thus. the teacher shows the way to problem solving through his or her own
example. The problem-solving tesearcher Frank Lester has concluded: **Prob-
lem-solving nstruction is most effective when students sense two things: (1) that
the teacher regards problem solving as an important activity.and (2) that the teacher
actively engages in solving problems as a part of mathematics instruction.” (14,
p. 43

A graphic illustration of the effect of teacher modcling emerged from the re-
scarch of Gregory and Osborne. They discovered a clear correlation between the
frequency of 7th-grade mathematics teachers’ use of conditional reasoning in their
speech (for example, “if-then™ and **whether-then™” staterents), and their stu-
dents’ understanding of logical statements. (10)

Signs of teacher cffectivencss show up inn the selection and presentation of
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K3 . .
mathematical content as well as in the modeling of good learning behavior For
example, Snmth found 1 his study that effective mathematics teachers use a greater
number of relevant examples than do their less effective colleagues. (21) In a re-
search study using computer-assisted instruction, Shumway found that the use of
counter-cxamples of mathematical statements, in conjunction with (positive) ex-
amples of those statements, resulted in higher achicvement than did the use of
examples alone. (20, 22) Thus, a discussion about isosceles triangles is best
complemented by some dentification of, and discussion about, non-isosceles tri-
angles, discussions about rational numbers should be balanced with examples of
irrational numbers, and 30 on.

As one aid in generating mathematical examples and counterexamples, teachers
ought to tahe advantage of the handheld calculator. The Calculator Information
Center prints a variety of such examples (11), and the Research Within Reach
chapter **The Calculator. An Essential “Teaching Aid™* directs readers to other
sources of calculator-based examples.

Claruy and Contintaty. Campbell and Schoen conducted a study in the 7th and
8th grades in which they searched for correlations between the behavior of pre-
algebra teachers and student attitudes toward mathematics and toward the teach-
ers. (3) Clarity, defined as the careful use of vocabulary and explaining the why
with the how 1 solving problems, and showing the continuity of the mathematics
curnculum were the two teacher qualities that correlated most positively with
student attitudes. As the researchers noted, **Students who perceived their math-
ematics teacher as trying to remove the ‘mysteries’ of mathematics had more po-
sitive attitudes toward mathematics and the teacher.”” (3, p. 374)

" McConnell focused on students’ perceptions of teacher clarity in his study of
9th-grade algebra, and he found that they matched up fairly closcly with the stu-
dents’ mathematical comprehension. (16) In fact, comprehension test scores were
positively correlated with the ratings of teacher clarity given by the rescarchers
as they observed classes, but those test scores were even more strongly correlated
with student ratings of teacher clarity.

In several other studics of secondary mathematics instruction, clarity also
cmerges as an unportant component of teacher effectiveness. When Smith com-
pared effective with ineffective teachers in his study, he noted a tendency among
effective teachers to usc fewer vague terms in their mathematical instruction (21)
Bush et al. set up their study to try to capture the notion of clarity in terms of spe-
cific teacher behavior. (2) The behaviors they related to clarity were:

~
Taking time when expldining,
. Stressing difficult points.
. Explaining new words.
. Demonstrating how to do something.
. Working difficult probiems on the board.
. Givings students an cxample and letting them try to do it.

v BTV —
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2
In a related study. Cruickshank er al. used jumior high school students” per-
ceptions to distinguish clear from unclear teachers. (5) Among the behaviors the
students associated with clear. but not with unclear, teachers were:

I. Giving students individual help.
2. Explaining something and then allowing students to think about it.
3. Repeating questions and explanations if students do not understand.
4, Stressing difficult points. - “
5. Asking students before they begin a task if they know what they are sup-
posed to do and how they are supposed to doit.
6. Taking time when explaining. ¢

Planning for Effectiveness

No matter what gauge of cffectiveness is used--student achievement, student
ratings. or classroom obscrvations--cffective mathematics tcachers behave in .
idenufiable ways that set them apart. Their classes are structured for consist-
ency—in particular, every class has some individual scatwork, but has more whole-
class work than seatwork. They come fo class prepared for clarity and continuity,
aware and 1n control of their questioning, modeling, and encouraging students in
the class, Such effective behavior requires preparation, and two specific areas that
research has identified as important arc use of language and expectations.

Use of Language. Judging from the testimony of classroom observers and from{}
student testimony as well, teachers who wish to improve the clarity in theirmath-
ematics teaching woulid do well to measure the vagueness in the mathematical terins
they plan to use in class. They should always plan to explain new words and terms
and to spend enough time in class discussing the more difficult of them. )

Some mathematical words and terms can have scveral meanings and they may
confuse many students if the teacher’s intended meaning is not made abundantly

'\clcar and held constant. In discussing changes in the meaning of terms during
“mathematical discussions, Kemme (13) provides the transcript of an aligebra class
in Which the teacher poses a problem:

There is a certain number of students iv the classroom. If there were twice as

many and then another ten were added to it, then there would be 42. Fow many

students are there? ,

Several students arrive quickly and intuitively at the solution 16. The teacher, still
hoping 10 use this problém 10 illustrate how to translate from word problems to
equations, asked: *‘What Kind of cquation could you write in this case?’" Since
they knew the answer, several students answered, quite legitimately: “'x = 16.”
The teacher, of course. wanted the equation 2x + 10 = 42 as an answer. To the
teacher, ““equation’ had a definite functional meaning--a tool for figuring out the
solution. To the students, the term *'cquation” included the mere statement of the
answer. Because of these different meanings, the class di¥cussion tumed into a
verbal wrestling match, with the teacher trying to twist the desired equation from

ERIC - 16 '
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the students. while they remaned unpersuaded and confused.

Examples of such musinterpretations abound in mathematics teaching  For
example. the term *“large”” can connote how far away from zero 2 p’tmcular number
15. Hence. a sentence like. “*4 is larger than -7, confuses many young peoplc if
they refer n their minds to distance from zero when they see ““larger,’ and not
to the two numbers’ relative positioning on the number line. Similarly, if teach-
ers age carcless enough to portray rectangles almost exclusively as non-squares,
their students can very easily be trapped into picturing only non-squares in situ-
atons where a more general conceptualization is appropriate. In such cases, they
farl to recogmee that all formulas and relationships connected to squares are spe-
cial cases of fornulas and relationships connected to rectangles.

Expectanons. One critical aspect of teacher planning which rescarch shows
dues not get the attention 1t demands is the arca of teacher expectations about stu-
Jent performance. No one can say for certain that a teacher’s expectations about
a particular student will have a direct bearing on that student’s academic achieve-
ment. What scems certain, however. is that teachers tend to behave differently
toward high- and low-achieving students, that students can and do discern ex-
. pectations from a teacher’s behavior, and that they adjust their own attitudes, ex-

pectations.. and behav jor accordingly . Good cites his own 1esearch. as well as the
supportive research of others. indicating that junior high students see their teach-
ers behaving differgntly toward low-achicving students. In particular, high achievers
are percerved by students to have “more choice of tasks and more time to con-
plete work if they request it.”” (9. p. 421)

Other rescarch has also focussed on ways in which many teachers behave dif-
terently toward high achievers than toward low achievers. Good summarizes that
rescarch. and though not all of the studies were conducted in the secondary school
mathematics classroor.. the full summary provides a valuable checklist for teachers
and so we repeat it here: (9. p. 416) )

I. Seating slow students farther from the teacher or in a group (making it

harder to monitor low-achieving students or treat them as individuals).

. Paying less attention to low-achicvers in-academic situations (smiling less

often and maintaining less eye contact).

3. Calling on low-achicvers léss often to answer classroom quesuons or make
public demonstrations.

4. Providing less time for low-achievers to answer questions.

5. Not staying with low-achicvers in failure situations (providing fewer clues.
not asking follow-up questions). .

6. Criacizing low-achicvers more frequently than high-achievers for incor-
rect public responses.

7. Praising low-achicvers less frequently than high-achievers after success-
ful public responses.

8. Prasing low-achievers more frequently than high-achicvers for marginal
or inadequate public responses. :

1o
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9. Providing low-achieving students with less accurate and less detailed
fcedback than high-achicvers, 0
10. Faling to provide low-achicvers with feedback aboul their responscs more
frequently than high-achicvers.
11, Demandimng less work and ctfort from low-zchievers than from high-
achicvers. .
12. Interrupting the performance of low-achievers more frequently than that
of high-achicvers. ) ’
The 1ssue of whether teacher eapectations affect girls™ mathematical learning
deserves special note. Parsons and her colleagues studied the effects of teacher
cxpectations on interactions in 13 cighth-and ninth-grade mathematics class-
rooms. (17) In the S classrooms in which teachers had the most different expec-
tattons for boys and girls, the rescarchers observed significantly more praise of
boys’ work than that of girls and fewer private student-teacher interactions. In
contrast, when the researchers observed the 5 classrooms with the lcast sex-re-
lated differences 1 teacher expectations, they found-that girls interacted more and
recewved more praise, and that there was more onc-o-on¢ teacher-student inter-
action. (17, 19) .
A sct of firm and appropriate expectations, kept visible to students and ap-
pealed to regulardy, 15 an essential component of effective teaching. A major study
of Briish secondary schools revealed that nigh academic expectations make up
one of several factors that set effective schools apart {rom ineffective schools. where
effectiveness 1s measured by student achicvement, attendance, behavior, and de-
hnquency records. (18) The staffs in the study’s effective schools communicated
to therr students that they expected most of their students to do well on exams,
they assigned ho:acwork regularly, and they checked homework regularly. Less
successful schools did none of these things as forcefully or regularly. Evertson,
Emmer, and Brophy noticed a similar patiern in junior high mathematics class-
rooms: **The more effective teachers also manifested behaviors indicative of higlier
expectations for their students. They assigned homework more frequently, stated
their concern for academie achievement more often, and gave more academic en-
couragement.”* (7. p. 176)

Conclusion .

There can be no doubt that the effect of mathematics teachers on students is
profound. As Bauersfeld deseribes it. “*Teaching and learning matheriatics is re-
ahized through fuwnan mteraction. 1tis a kind of mutual influencing, an interde-
pendence of the actions of both teacher and student on many levels. Itis not a
umlateral sender-receiver relation--the student’s reconstruction of meaning is a
construction via soctal negotiation about what is meant and about which perfor-
mance of meaning gets the teacher’s (or the peer’s) sanction.” (1, p. 25)

Only the teacher can determine whether the effect of those classroom inter-
actions will be beneficial or harmful. The margin of benefit increases. however,
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with the care and planning teachers put into their clanty and the control they ex-
ert over their expectations and classroom efforts to welcome and to generate stu-

dent input.
The ixportance of clanty and of mvolving s(ud;nls as much as possible is a
message that emanates, not from vne. but from seseral major research studies.
Two recent studies, however, mmply that we are far from heeding that message.
In the first--a survey of research on patterns of instruction in American mathe-
t matics classrooms--the most noticeable pattern. in an overwhelming number of
mathematics classrooms, involved a daily routine in which answers are given to
the previous day's assignment, the more difficult problems are worked at the buard.
new material 15 covered briefly, assignments are given for the next day, and the
rest of the period 1s spent on individual work or the homework assignment. (23)
Just as worrtsone das patterns of instruction are patterns of student attitudes.
Data fiom the second study. the Nativnal Assessment of Educational Progress.
resulted 1n the following conclusion. “For the 9-year-olds, mathematics was the
best Iiked of five academic subjects, mathematics was the second best-liked sub-
Ject of the 13-year-olds and the least-liked subject of the 17-year-olds.™ (4 p. 134)
If we are to hold onto the interests of students as they begin to drift away in
the carly years of sceondary school mathematics, then teachers must heed the
message of research into teacher effectiveness and begin to adjust their planning,
expectations, and behavior o create a dassroom environment in which clarity 1s
a constant goal and 1 which student input is at the center of the learning expe-
rience. .- :
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.INDIVIDUAL
DIFFERENCES AMONG
MATHEMATICS LEARNERS




What are some of the major differences in learning styles and levels
of development among secondary schodl students? How should such
differences bé dealt with in the mathematics classroom?

Despite the.fact that much of the secondary school curriculum is designed on
_the assumption that students all think in the same way. sccondary level mathe-
matics teachers hnow differently. Every year, they meet many students who seem
unable to think logically, or who become confused whenever symbols are used to
represent mathiematical concepts. Furthermore, many students approach mathe-
matical decisions without a sense of what is reasonable.
> This report addresses individual differences in mathematics learning at the
‘ secondary level. It describes the major factors which rescarch has linked to in-
dividual differences. lists the curriculum arcas where those factors are likely to
have a significant impact, and offers some suggestions to teachers for identifying
and responding to those individual differences.

Individual Differences

There are several research perspectives on individual differences in mathe-
matics learning. One group of researchers concentrales on the different stages of
cogmuve development through which children grow. Another group studies the
various cognitive siyles or ways of processing information among leamers A third
group isolates the curricular and environmental influences to which learners fe-
spond differently, regardiess of icarning styles or deveiopmental levels Taken to-
gether, the three perspectives provide a more integrated picture of the individuai
mathematics Iearner than each provides separaiely. :

Cognitive Development

Generally. developmental rescarchers draw their perspectives from the work
of Jean Piaget and Jus followers. As Piaget describes it, adolescence is the period
when children grow out of the stage of concrete operations where their thinking ‘
has been totaily dependent on perceptions and.concrete experiences Readers who
want a more comprehensive look at the concrete stage should refer to the report
**The Bridge from Concrete to Abstract’” in Research Within Reach* Elementary
School Mathematics. This report focuses on the formal operation stage. the stage

that follows the concrete operations stage., im which an individual can internalize

v
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thoyght. thtok about thinking, keep two or more variables in mind at one time,
and sce a concept as part of a larger system. .

According to the ongnal Piagetian hypothesis. a majority of children enter
the stage of formal “anking between the ages of 12 and 14. Rescarch has shown.
however, that for many chiidren the process is much slower. (22) There are in-
dividuals who begm to think formally on some tasks well before they can think
formally on others., and sume 1ndividuals never enter the stage of formal thinking
for some tasks. .

Praget Llaims that the stage of concrete thinking ends and the formal thinking !
stage begins for a child w hen he or she can conserve the concept of volume Con-
servation of volume 1s tested in several ways, but the goal in each case is to de-
ternune if a Jhuld undenstands the coneept of volume well enpugh to ignore imelevant
attributes wn volume problems. The irrelevance of the weight of an object to the
volume of water 1t displaces when immersed provides an example. A student is
shown two dentiedl glass contaifers partially filled with cqual amounts of water
T'wo metal cyhinders of equal volume but different weight ‘z‘lrc then handed to the
student. After the equal herghts and thicknesses of thcomctzﬂ Tylinders have been
pointed vut, the experime nter lowers the lighter cylinder into one of the two glass
contamers. Once the student notes the rise in water level, hé or she is asked to
predict the rise 1n water level when the heavier cylinder is lowered into the other
glass contawner. A child who is at least in the carly stage of formal thinking wili
recognize that the weight of the cylinder in this example has nothing to do with
how much volume is displaced.

in his review of the research on cognitive development, Carpenter has de-
scribed formal thought in the following way:

*The most fundamental property of formal thought is thesability to consider

the possible rather than being restricted to concrete reality. At this stage ad-

olescents can wentfy all possible relations that can exist within a given sit-

uation and systematically generate and test hypotheses about these relations

They are capable of evaluating the logical structure of propositions indepen-

dentof any concrete referents, and they are able to reflect ontheir own thought

processes,” (3, p. 176) .

According to the Praget model, two of the major-facets of formal thought are’

I. Propositional logic. Individuals who have reached this level of thinking can
understand “if...then’* and **cither...or*" reasoning and can keep several varia-
bles 1n mind at one time. Flavell describes a study in which an experimenter shows
poher clups of different colors to children, then hides onc in his hand and says.
**Enther the chip in my hand is green or it is not green.” The children are in-
structed to indicate whether they think the statement is true, false, or undecidable
Pre-formal thinkers tend to concentrate on their perceptions--in this case, a chip
hidden from view--and indicat¢ that they cannot tell whether the statement is true
or false. Individuals who have attained the formal stage of thinking are more in-
chined to focus on the words, not their perceptions, and therefore to indicate that

.y
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the above statement s true. (11

2. Proportional logie. Individuals who have reached this level of thinking can
successfully compare ratios, as in the problem: **Which mixture would give the
sweeter drink. one that is € narts orange syrup to 9 parts water or one that is 4
parts-urange syrup to 8 parts water”™* Preformal thinkers are gencraily unable to
hold the twa ratios together in their minds in a way that allows thenuto weigh one
ratio against the other and then-to adjust one ratio to make it proportional to the
other. (6. 1D

Cognitive Style

Another perspective on individual differences among mathematics learners
has developed from the work of researchers who study cognitive style, or how in-
dividuals differ in processing information. Many such cognitive styles have been
wdentified; this report concentrates only on those styles that have the greatest im-
plications for the teaching of sccondary fevel mathematics.

As described by researchers, cach cognitive style represents & continuum of
style innformation processing, and everyone has a place somewhere on that con-
tinuut. One such continuum is given by the two opposing cognitive styles im-
pulsivity and reflection. Persons at the impulsive end of the continuum tend to pursus
the first answer that comes to mind when they are asked a question or the first
approach 1o a solution when they face a probiem. Reflective individuals, on the
other hand, are hesitant to respond or react quickly, and they are likely to reflect
fonger on the different possibilities for apswers and problem soluticns. (9)

Field dependence and field independence arc the opposing ends of another
cognitive style continuum. As Fennema and Behir describe it

At the field dependence end of the continuum, activities and perceptions are

global, that is. subjects focus on the total environment. At the ficld inde-

pendence end of the continuum, activities and perceptions are analytical, that
is, subjects perceive the environment in its component parts. At the onc ¢x-
treme of the performance range, perception and mental activities are domi-
nated by the prevailing ficld: at the other extreme they are relatively independent
of the surrounding ficid.™" (9. p. 330

Other Factors

Other factors that contribute to individual differcnces among mathematics tearn-
ers have arisen from the work of clinical rescarchers. Several clinical stidies. in
which students were interviewed as they worked through mathematical exercises
and problems. have made the following hypothesis sccn very plausible: as chil-

_dren proceed through school mathematics--in particular, as they approach sec-

ondary level mathematics--some develop a style of leaming that relics on inemorizing
rules and procedures. while others develop-a style thay lcads them to rely con-
sistently on intuition and common sense. To illustrate these styles, Peck and Jencks
reported on their in(crvicx:rs of two 7th graders, both fairly successful in mathe-
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maties, as measured by standardized tests and their placement in school. Both st
dents were ashed to work lhrough exercises in the muluplieation and comparison ™
of dectmals and 1 the addition of fractions. Each applied learned rules for these
exereses, butone relied so heavily on memory that she was unable to sense when
her memory had produced the wrong rule for her. For example, she worked through
the following example:

-

.
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19 w2
O W

2,
. 22

24.53 .

Her description of the ruie fot focatmg, the decimal point in the answer was, **You
luok gt this bottom line and keep going straight down underneath for the an-
swer. ™ Her firm fucus on the rule--which is appropriate for addition and not mul-
tupheaton of decimals--blinded her to the unreasonableness of producing a number
larger than 24 with the multiplication of two numbers less than 2 and 3, respec-
tvely. The second student, on the other hand, was consistently inclined to apply
intivn to supporting and gauging the appropriateness of remembered rules. The
two students were nterviewed together and. as intelligent as she was, the first
student was unable to make the teap from mathematics-as-meniorized-rules o the
common sense approach of the second student. (20)

Stdents vften misapply ruld and are unabic gauge whether a particular rule
ts appropridte. Though there probably is no single cause for such.behavior, Llin-
teal rescarch has clearly documented how deeply ingrain:} the reliance on mem
ory becomes for some mathematies students and how narfow is their freedom to
use their intition when they are doing mathematics. |, =

Factors which grow out of the mathemativs curticulum itself and the child’s
previvus experience withim that curriculum can also heighten differences among
learners. For example, it seems clear from several studies that children vary in
their suwess in bridging the system and language of mathematics with their real
worll Lystem and everyday Tanguagge. This i$ not a guestoic of being far enough
dlong m cogmtn e development o be able w handic mathematical symbols, Some
<hildren handle symbols well enough, but their impression of mathematics ts that
1t1s a system of rules divoreed from the real world, Thus, they work through
problems and excreises. using rules that may not, in certain situations, mahe any
sense when measured against their real-world expericnce. .

Erlwanger’s study of this phenomenon was at the elementary school Ievel, but
it presents o graphic lustration of this disjointed view of mathematics, and is rel-
evant t the teaching of secondary level mathematics. (8) Itis tempting to assume
that if a sTudent has some basic misconceptions about mathematics, those mis-
cunceptions will show up quickly cither through test resuits or teacher observa-
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uon. Erlwanger, however, found sixth-grade children who were fairly successful
. w therr indwidualized mathematics programs. but whose pereeptions of mathe-
maties as a system were very skewed. For ¢xample, one child named Benny had
torrectly observed that mathematical answers ean be written in various forms. as
@ wml =Y o= Y2+ Y2, but had stretehed his observation into a strange, basic be-
hef about mathematics. Benny believed that in mathematics an answer can take
apparctly contradictory forms. because MSWers, in his words, work like ““magic.
beeause really they 'te just different answers which we think they 're differenc tut
really they're the same. ™ (8. p. 173) This belief made him adamant i defending
such statements as ¥ + Y2 = land Yo as 2 decimal is 1.5 *The one stands for s
10; the decimal; then there's S—shows how many ones.” (8. p. 202) Amaz-
wgly, Benny had woven such misguided rules into a coherent system that per-
nntted him to succeed m his individualized mathematics program.

Booth's work points to-another variation of this lack of success in bridging
mathematics and the real world. Hegreports a significant frequency of secondary-
level students who may compute well enough using formal mathematical procc-
dures such as long division. but who fall back on what Booth calls **child-meth-
ods.” such as counting, when they workon mathematical word problems. (2) At
no pomt along the way have they come to see how formalized computational pro-
cedures can be used as strategies for solving mathematical problems. While it is
clear that all students use mathematical methods of some sort to solve real prob-
lems. it is equally clear that for many of these students a chasm stands between
those methods and the mathematics they use for computational exercises.

Critical Topics

According to the research outlined above, every secondary level mathematies
student (1) is somewhere on the continuum between conerete thinking and full
formal thinking, {2) has a position on cach of several cognitive style continnums,
and (3) differs from many ather students in the Kind of bridge he or she has built—
with language. intuition, and the formation of personal rules--between mathe-
matics and the real world,

Whether a student understands a particular mathematics topie or not may de-
pend on how properly the presentation of the topic fits the needs of that student.
With the profile of individual differences developed above, itis possible to clar-
ify some of those needs and to pinpoint topics in the sccondary mathematics eur-
preulum where the matching of presentations to individual differences is likely to
be critical to success in learning.

Throughout the range of secondary level mathematics topics. teachers must
be aware of one overriding hmitation imposed on pre-formal thinkers and should
tatlor thewr choice and presentation of mathematics cxamples accordingly. The pre-
formal child. in the words of Flavell, *usually begins with reality and moves re-
luctantly. if at all, to possibility.™ (11, p. 103) Hence teachers should not disre- . -
gard students who do not respond very smoothly to “what if...7"" questionsorto
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challenges to ake hy potheses. Those students may not have settied into the level
of formal thinking where such tasks are a comfortable matter of course

Here are some specitic mathematical topics where individual differences have
been detected. They are presented with suggestions for adjusting instruction

Proportion and Fractions. Preformal thinkers have considerable difficulty with

. proportion problems, which compare two or mere ratios. But what about the
components of those problems. the ratios themselves? A ratio is, of course, one
of the representations of the concept of fraction, and most students have been ex-
posed to fractions from carly clementary school. Thus most secondary teachers
have high expectations about the facility in using fractions that students bring to
secondary mathematics.

{t wrns out. however, that a firm understanding of fractions depends on the
development of formal thinking. McBride and Chiappetta studied ninth-graders’
understanding of equivalent fractions (for example. four-sixths equals how many
nmths?), and they were led to conclude that facility in using the concept in-
creases as proportional reasoning increases. (19) Many ninth-graders have not yet
settled wto full formal thinking. in particular. into proportional rcasoning, so
teachers at that level must watch for weaknesses in their understanding of equiv-
alent fractions.

Stadents who are 1n transition from concrete to formal thinking can benefit from
mstruction 1 crucial topics like fractions. Like preformal thinkers, many carly
formal thinkers show their inability to do proportional thinking by adding inap-
propriately when they are ashed to adjust one ratio to make it proportional to an-
other. For example, consider the problem. When Bill made emonade he used 4
spoonfuls of sugar and 10 spoonfuls of lemon juice. Mary made lemonade with
6 spoonfuls of sugar. How many spoonfuls of lemon juice must she use so that
her lemonade will taste the same as Bill’s?

[t has been an established fact that a common strategy of preformal thinkers
18 to subtract 4 from 6 to get 2, then add to 10 to yield the answer 12. The correct
answer. of course. is 15 and it is produced by proportional thinking—for exam-
pic. Yo = %is,

Revently, Karplus and his colleagues have confirmed that carly formal think-
ers may also use such an additive strategy. (13) In this study. nearly 25 percent
of the sixth and eighth graders they tested and interviewed alternated between ad-
ditive and proportional strategics in solving a string of such lemonade problems ¢
The researchers’ conclusion. avoidance of fractions, rather than cognitive devel-
opment, seemed to be the major obstacle in the way of these students” mastery of
quantitative proportion problems. In other words, there arc many studeats who
would move fully into proportional thinking if the appropriate instruction were made
availabie to them.

Kurtz and Karplus designed some instruction that can affect proportional rea-
somng. (16) In a laboratory sctting with prealgebra students they used tables of
data as the vehicle for illustrating the concepts. such as constant ratios, that are
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the bass of proportional reasonig. The lessons extended over fourteen class pe-
nls. When the students were tested before the experiment. one-sixth of the stu-
dents n the expenmental group exhibited proportional reasoning: after the
istruction, roughly two-thirds of the students exhibited proportional reasoning.

Proof. A formal mathematical proof is a complex cognitive task. The indi-
viduat constructing, the proof must weigh several deductive paths at the same time.
Once the path for the proof has been chosen, both the goal dnd the established
cvidence must come toggther to inform the steps of the proof. These are taxing,
\f not futile. deinands onpre-formal students and there are many such students in
the ninth and tenth gradey, where formal proof is a frequent objective in the cur-
riculum. (For furtier infgrination about proof, sec the chapter ““The Path to For-
mal Proof™".) j 1

Algebra. Both cognitive style and cognitive development have a diréct bear-
ing on the learning of algebra. Cognitive style scems to come into play in the
strategies students choose to solve algebraic equations. Petitto found that ninth-
graders fell into two strategy groups: those who Icancd toward an intuitive ap-
proach that triéd to capture the numerical relationships among the numbers inan
cquation without transforming the equation itseif, and those who relied on mem-
orized or routinized step-by-step procedures (algorithms) for transforning the
equation and producing an answer. (21) Some students moved casily between the
intuitive and algorithmic approaches. and they tended to be the most successful,

For example. students in the intuitive group solved ¥ = Yo by noticing that
30 is 6 times 3. so x must be 6 times 3, or 18. Students in the algorithmic group,
on the other hand. nultiplied both sides of the cquation by 5 to produce a new
cquation. multiplied both sides of that by 6, etc. From observing these two styles
in action. as she gradually increased the difficulty of the equations given to the
students, Petitto learned that neither strategy, uscd alone, was foolproof. Stu-
dents with the intuitive style faitered as the number relationships grew in com-
plexity. as in W23 =%+, while students iti the other group occasionally failed
to adapt their algorithmic procedures when the structure of the equations changed.
As aresult, they not only produced a wrong answer, but were unable to check to
see if the answer fit in the cquation.

Since the most successful subjects in the study were those students who moved
casily between the intuitive and algorithmic approaches, Petitto suggests that al-
gebra teachers give cqual stress to step-by-step solution procedures and to the
consistent intuitive assessment of equations to sce if the numbers in them relate
to each other in ways that suggest solutions. .

Formal proof has alrcady been mentioned as an aspect of algebra affected by
cognitive development. Another is the concept of equation. In particular, Wag-
ner studied how well 12-. 14-, and [7-year olds conserve the concept of cquation.
(26, 27). Once again, conservation was the measure of cognitive development and,
just as in the case of conservation of volume, the task was to assess the under-
standing of a concept by deterinining whether or not a person realizes that the
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critical attnbute. the essence of the concept. is invariant under transformations of
certan irrelevant attnibutes.” In the case of equation, Wagner presented each
student with two equations. (1in the second cquation W is seen through a small
window from which it can be rcmovcd):

TxW+ 22-=109

TxW+ ”2 =109
Once the student achnowedged that they both have the same solution, the re-
searcher l'(.pldLLd W by N in the second equation and asked **Which solution will
be larger2** Students whose response indicated that they thought the solutions would
be different were deemed nonconservers. Wagner reported that one-third of the
interviewed students who had successfully completed algebra failed to conserve
on this task. Her experiment makes it very clear that a sizeable number of chil-
dren complete algebra but do not conserve the concept of equation.

Geumclr\ and Measurement. Any geometric problem that requires a student
¢ither to construct a formal proof or to hold more than one variabie in mind at a
ume will severely tax the child who is in the preformal reasoning stage To illus-
trate, Kidder conducted a study that required 13-year olds to consider the invar-
tants when a tnangle i a plane is rotated through a fixed angle. (I4) The students’
answers were o muxture of correct and incorrect conclusions..and Kidder ascribed
this to their having to focus on one variable (¢.g., length of sides) and then an-
other (e.g., the posmons of the triangle vertices with respect to the origin of the
rotatwon). In pdl’lb.llldr they generally showed an inability to conserve length in
the tash--that 15, to understand that in t» - rotation of a triangle the side lengths do
not change. :

If conservation of length and conservation of volume are weak points for in-
dividuals who have not reached the level of full formal thought, it would seem
Iikely that conservation of area would be a weak point. too. Indeed itis. as Sze-
tela learned. He gave seventh- and eighth-graders the task of deciding whether or
not deforming the perimeter of a shape affects its arca (24) Of course, it usually
does (for example, changing a square into a thombus with the same side-length
does not change the perimeter, but it changes the area), but Szetela found that the
pre-formal thinkers in this group of subjects were inclined to believe that areas
are invariant under such transformations of perimeter.
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Problem Svlying. A study of the processes used by eighth-graders to solve al-
gebra problems showed that pre-formal thinkers used fewer processes than for-
mal thinhers. (7) In particular, the study examined performance on problems such
as: '

Jeff bought 5 oranges and 10 apples for $1.65. An apple and an orange

together cost 20 cents. How much does one apple cost? How much does

one orange cost?
Both groups contained students who used diagrams in their approaches to the
problems as well as students who tried to recall similar problems, but students who
were formal thinkers used the following processes not used by the others: deduc-
tive geasoning. use of successive approximations, estimation, checking of con-
ditions. checking of manipulations. checking by retracing steps.

Cogmitive style also affects the types of processes and strategics used to solve
problems. In fact, Adi and Pulos related field independence—field dependence
to flexibility i situations where two problem-solving strategies are in conflict: *‘One
strategy had been used in the past, or is relatively simple. and the other strategy
must be constructed. or is relatively complex. In both cases, the simple strategy
15 considered first, .but only the field-independent subject *drops’ this to consider
and construct the alternative strategy.’” (1, p. 150)

Firm conncctions between impulsivity-refléction and problem solving have
not been made, but some plausible hypotheses have been offered  For example,
sinee reflective dividuals are more inclined to take time to reflect, perhaps they
are also more inciined to use strategies that flow from reflection, such as under-
standing the problem by 1dentifying the unknown, or redefining the problem by
constructing a simpler, but similar, probicm. ’

Implications for Instruction

Two messages emerge from the rescarch outlined so far in this chapter- there
exist significant individual differences in fearning styles among secondary level
students and there are numerous arcas of the secondary mathematics curriculum
where those differences are likely to affect lcarning. In the face of these two mes-
S4ges. 1L 1s natural to wonder what role mathematics teachers can play in assuring
that learning takes place despite individual differences.

As a start. teachers can sharpen their diagnostic skills and be more alert for
the hinds of differences described in this report. Careful observation, coupled with
careful histening, will increase each teacher’s sensitivity to individual differ-
ences.

Recogmazing that Piaget’s individual interviews are t00 time-consuming for
teachers who want to gauge the emergence of carly formal thought among their
students, Renner er al. developed a paper-pencil test that comes very close to Pi-
aget’s Dusplacement Volume task interview in measuring carly formal thought
(23) For an additional example of how researchers probe for levels of proposi-
tonal and proportional reasoning, readers should see Phillips’s article’ (22) Even
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if teachers choose not to adapt the questions in the article for formai classroom
diagnosis. they will at least become more aware of the kinds of questions that il-
luminate the formal thinking stage.

Another rich source of diagnostic wisdom is the scveral case studies men-
tioned 1n this report, whose intervicw transc ripts provide a lively and relevant ac-
count of children’s different approaches {o learning mathematics. The carefully
chosen. non-dircctive questions of the researcher-interviewers can serve teachers
as models for their own classroom diagndsis of extreme dependencics on mem-
ory. skewed impressions of mathematical ruies. and so on. With their obscrva-
tonahand diagnostic skills sharpened. these teachers can then focus on appropriate
nstruction. - ) '

Some educators have been skeptical about the effectivencss of instruction in
significantly increasing the pace of cognitive developriient. In recent years, how-
ever, several researchers have argued against this skepticism. Klausmeier has tested
his own Cognitive Learning and Development (CLD) Theory and disagrees with
those who arc content to wait for children todevelop without stimulating that de-
velopment. (15) According to CLD Theory. the transitional period between con-
crete thought and formal thought is much longer than many previously imagined,
and instruction can.hasten the transition for many individuals.

Yeotts and Hosticka discuss the teaching of students who are in developmental
wranstion. and they point out that what sets apart the thinking of concrete oper-
atonal ndividuals from the thinking of formal operational individuals is not the
processing of information (how knowledge is organized in the mind and memory
for later usc). but the ways in which knowledge is acquired and represented. " ‘For
the concrete operational lcarners ideas must be abstracted from their experiences
with the physical world and their actions performed on objects. whereas the for-
mal operational lcamer is able to work in a hypothetical deductive manner in which
reasoning processes can be applied to any chosen sct of premises.” (29. p. 558)

Conscquently. they. suggest a three-phase approach to problem-solving in-
struction in the middic grades that accommodates the many students who are in
wransition from concrete to formal operations. Phase I stresses cue anendance, or
having the students attend to all the relevant details potentially useful in solving
a problem. During Phase 11 students practice verbalizing their problem-solving
processes and strategics as they work on solving problems. Finally, Phasc III takes
the verbalizing one step further. and students are trained and required to diagram
therr problem-solving steps. Flow-charting is one recommended procedure for this.
suitable mn the way it represents problem solving, for both concrete and formal
operational thinkers.

Phillips also addressed the role of the tcacher in students” development. First
of all, she listed the factors involved in development as they have unfolded from
the work of Piaget and others: maturation, social interaction, cquilibration. and
experience. (22) Maturation, of course, is that aspect of development that derives
from an mdividual’s own interior clock and genetic scheduling. Individuals also
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Jevelop through suctal mteraction, especially with peers, and teachers ought to
nurture this aspect of development through classroom discussion.

Equilibranion is the two-way process an individual uses in cognitive devel-
opment, first to absorb a new Icarning expericnce and adapt it to the conce ptual
framew ork the dividual uses to intepret the world and sccond. to restructure that
conceptual framework 1n light of the new learning expericnce Thus. as we de-
velop. we are constantly adapting new learnings to our world-view, and changing
our world-view 1n response to new Iearnings. Phillips argues that, with careful |
challenging, a teacher can help students in this process by providing ""an cnvi-
ronment both familiar and novel. comfortable and uncomtortable ** (22, p 8) Thus.
for example. as long as teachers stay mindful of students’ varying capacities for
propositional reasoning, occasional experiences with what if..." questions and
~1f...then"" statements are liable to help students in their development. In fact,
one study of seventh-graders' logical reasoning skills found a high correlation be-
tween the frequency of teachers’ use of conditional reasoning (c.g.. "'H--then”’
sentences) dnd the conditional reasoning skills of the students. (12)

About expertence Phillips writes. **Too often the high school subject area spe-
cralist assumnes that someone clse has provided the concrete experiences and ac-
tion-learning necessary ' (for strengthening and moving cognitive development)
(22, p.8) As an example she points to proportional reasoning: **Measurement ac-
tvities using real tools and objects, making comparisons. using symbols for
measurement terms. using objects to demonstrate fractional representations, are
all ways to introduce understanding of proportion.”" (22, p. 9) Similarity of tii-
angles 15 aconcept related to proportional reasoning, and it is a concept many high
school students find difficult to apply to mathematical problems. (4) The kinds of
activitics suggested by Phillips. focussed on similar triangles, can guide students
to a full understanding of the concept.

The Szetela study cited carlier also-pointed to the role concrete experiences
should play in cognitive development at the sccondary level. After determining
the hinds of misunderstandings about arca and volume that arc common among
secondary students, Szetela wrote. *'The use of formulas to obtain arcas and vol-
umes should be delayed until students have had sufficient experiences to acquire
better understanding of the seemingly simple, yet complex, concepts of area and
capacity.” (24, p. Il) Insofar as it is possible, such experiences should involve
students 10 manipulating area and volume changes, to compare and determine what
are the relevant and irrelevant variabies in the change processes. To cite some ear-
her examples, students can experiment with the effects of weight change on vol-
ume displacement or the effects of shape changes on perimeter and arca

According to a study by Threadgill-Sowder er al., manipulatives can also be
valuable for some jumor high students in understanding logical connectives such
as “and,” “or." “not.” In particular, students in the study who had scored low
on standardized achievement tests benefited from instruction in the use of logical
connectives that employed color-coded cards and attribute blocks. (25) In light of
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a recent natonal survey (10, 28) which reported that nearly 40% of all mathe-
mates teachers 1 grades 7-12 never use manipulatives in class, it is clear that many
secondary-level students might never have a full chance to learn mathematics

Conclusion

Because of current bram research and research into information processing (for
example see 5 .and 18). the future holds some exciting prospects for adapting
mathematics mstruction to sccommodate individual differences  Inthe meantime,
wnsofar as they are able, teachers should try to ensure that each student’s learning
s consistent with that student’s individual development and learning style As has
been pointed out, students will differ from one another in the ways they perceive
the world: m particular, in the ways they pereeive the connection between math-
ematics and their world. Therefore, to the extent that teachers can help studenis
put geometrie concepts and facts, the manipulation of equations, and so on. into
thetr own words and world-view. they will be helping them to make a bridge be-
tween their everyday world and the world of mathematics.

. References .

I. Ad1. Helen. and Pulos. Stephen. 1980, *Individual Differences and Fornwal Opera-
tonal Performance of College Students. ™ Journal for Research in Mathematics Edu-
cation 11: 150-153,

2. Bgolh. Lesley R. 1981, "Child-Methods in Secondary Mathentatics. ™ Educational
Studies in Mathematics 12: 29-42,

3. Carpenter, Thomas R, 1980, “*Rescarch in Cognitive Development.™ In Research in
Mathematies Educanon, edl. Richard J, Shumway. Reston. Virginia. National Council
of ‘Teachers of Mathematics.

* 4, Carpenter, Tnoman P,. ctal. 1981. Resudts fron the Second Mathematics Assessment
of National Assessment of Educanonal Progress. Reston. VA. National Council of
Teachers of Mathematics. .

5. Chall. J.S.. and A.F. Musky. cds. 1978, Education and the Brain Chicago: Univer-
sity of Chicago Press.

6. Copeland, Richard W. 1974, How Children Learn Mathematics, Teaching Implica-
nons of Praget's Research. Sccond Edition, New York: Macmillan,

7. Days, Harold C; Wheatley, Grayson. and Kulm, Gerald, 1979, **Problem Structure.
Cognitive Level, and Problem-Solving Performance. ' Journal for Research in Math-
ematics Education 12: 135-1435,

* 8. krlwanger, Stanley H. 1975. **Case Studics of Children’s Conceptions of Mathemat-
ics - Part 1" Journal of Children’s Mathematical Behavior \.

9. Fennema. Elizabeth and Behr. Merlyn. 1980. **Individual Differences and the Learn-
ing of Mathematics,'” In Research in Mathematics Edncation, ed. Richard J Shum-
waty. Reston, Virginia. National Council of Teachers of Mathemalics,

10. Fey. James T. 1979, *‘Mathematics Teaching Today. Perspectives from Three Na-
tional Surveys."* The Mathematics Teacher 72: 490-504.




Aruitoxt provided by Eic:

ERIC

Individual Learner Differences

<

11, Flavell. 1. H. 1977, Cogmuve Development. Englewood Cliffs, Nw Jersey: Prentice
Hall.

12. Grcgory: John W., and Osbome, Alan R. 1975, *Logical Reasoning Ability and Teacher
\ erbal Behas tor Wathim the Mathematies Classroom.” Journal for Research in Math
ematics Education 6: 26-36. . ’

13. Karplus. Robert, Pulos. Steven, and Stage, Ehizabeth K. 1980. ““Early Adolescents’
Structure of Proportional Reasoning.™* Proceedings of the Fourth International Con-
ference for the Psychology of Mathematics Education. Berkeley, California.

[4. Kidder. F. Richard. 1976, *"Elementary and Middle-School Children’s Comprehen-
ston of Euclidean Transformations.” Journal for Research in Mathematics Education
7: 40-52.

(5. Klausineter. Herbert J. and Assodiates. 1979. Cognitive Learning and Developryent:
Puagetian and Information-Processing Perspedtives. Cambridge, Masgachusetts: Bal-
linger Publishing.

16. Kurtz. Barry. and Karplus, Robert. 1979. “*Intellectual Development Beyond Ele-
mentary Schivol V1L, Teaching for Proportional Reasoning. ™ School Science and Math-
emutics LXXIX: 387-398. :

17 Lawson. Anton E.. and Wollman, Warren T. 1980., Development Leveland Learning
to Solve Problems of Proportionality In the Classroom.”" S.keol Science and Maide-
matics LXXX: 69-75. *

18. Lochhead, Jack. and Clement, John eds. 1980. :Cognilive Process Instriction: Ré-
search on Teacling Thinking Skills. Philadelphia: The Franklin lnstitute Press

19. McBride, John W.. and Chiappetta, Eugene L. 1978. The Relationship Between the
Proportional Reasomng Ability of Ninth-Graders and Their Achievement of Selectec
Math dnd Science Concepts. ERIC Reports (ED 167 351). .

20. Peck. Donald M., and Jencks, Stanley M. 1979. **Differences in Learning Styles--An
Interview with Kathy and Tom,"* The Journal of Children’s Mathematical Behavior
2:83-88. ,

21. Petitto, Andrea. 1979. “*The Role of Formal and Non-Formal Thinking in Doing Al
gebra.* The Journal of Children’s'Mathematical Behavior 2: 69-82.

22, Phillips, Beverdy. 1978, Adolescent Thought. Curriculion Implications. ERIC Re-
ports, (ED 164 495).

23, Renner, John W,, et al, 1978. “Displ:icemcnt Volumne, An Indicator of Early Formal
Thought, Developing a Paper-and-Pencil Test.”” School Science and Mathematics
LXXVIII: 297-303.

24, Szetela, Walter. 1978. A Studds of the Interferring Effects of Some Deceptive Visual and
Mathematieal Clues Related to Area and Capacity and the Ability of Sevemth and Eighth
Grede Students to Use Analogy to Solve Capacity Problems. ERIC Reports, (ED 165
994).

25. Threadgul-Sowder, Judith A.. and Juilfs, Parricia A. 1980, **Manipulative Versus
Symbolic Appruaches to Teaching Logical Connectives in Junior High School' An Ap-
utude x Treatment lateraction Study.”> Journal for Research in Mathematics
Educdtion 11: 367-374.

26. Wagner, Signd. Conservaton of Equation and Function and ks Relationship to For-

-

27




Individual Learner Differences

i ki i A

mal Operational Thought. ERIC Reports. April 1977, (ED 141 I7).

27. Wagner, Signd. 1981. **Conservation of Equation and Function Under Transforma-
non of Variable. " Journal for Research in M(uhenu,uics_E(Iucalio:z 12:107-118

28. Weiss, Ins R. nd. Highlights Report, 1977 National Su'rvey of Science. Mathematics,
and Secial Studies Education. (ED 152 566).

* 29, Yeols. Catherine. and Ahce Hosticka,. 1980. **Promoting the Transition to Formal
1 Thought through the Development of Problem Solving Skills in Middlc School Math-

It

. ematics and Science Curricutuny.”” School Science and Mathematics LXXX* 557-565

/ﬂ
- /

.

FRIC » .- R ‘

Aruitoxt provided by Eic:




COMMUNICATING MATHEMATIQS




How precise do we teachers need to be in our use of mathematical
language? On the one hand, texts seem almost tog precise—for <
example, making a fine distinction between “reciprocal’’ and
“multiplicative inverse.” On the other hand, many students seem
' to be easily confused by terms like “least common. multiple.”’ They
‘ see “least’’ and look for the smallest number.

Language serves a dual purpose in education. It is, of course. the primary fcans
N by wiuch thoughts are communicated by one person to another It is alsa the means
by which thinking wtself 1 done—when we think, we speak to ourselves and process
our thoughts with silent words and sentences.

Mathen.atics 15 no one’s native language. and so no one thinks or communi-
cates totally 1 mathenwatics. Yet, more than any other discipline, mathematics
requires careful.translation, much as any forcign language does It the translation
breaks down, misconceptions grow and mathematical thinking sufters

Research into the interplay. between language and mathematics is in its in-
fancy, although 1t 1> conceivable that future studies will uncover significant re-
lationships between the learning and use of language and the learning of
mathematics. (1) -

This report focuses on the language of mathematics and on the effective com-
mumcation. of that language, -dividing the relevant results into two parts* con-
mumication through reading and, writing, as happens with textbooks and tests; and
communication through speaking and listening, when students interact with teachers
or peers. No matter what the mode of communication,however, the resuits re-
ported below bear out the central role of teachers in communicating mathemat-
1cs: they.must not only munitor what is communicated, but also how it is
- . communicated.

Communicating through Reading and Writing

Difficulues that anse in the translation of mathematics arc not due solely to
confuston.about vocabulary terms such as “*quadrilateral™ ar *“least common
muluple.” Kane (15) points out that mathematical English differs from ordinary
English in several ways, among which are:

. Letter. word, and syntactical redupdancies differ. For example, single let-
ters such as x and v appear frequently in mathematical English, as do words
such as **infinite’”” or “*greater,”* and sentences built around the condi-
tional phrase “*if and only if.”’

. 2. Names of mathematical objects usually have a single denotation, unlike
. >
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nouns in ordinary English. For example, **point’* denotes only one thing
in mathematics, but in cveryday language it can have a varicty of mean-
ings, from the tip of a cone to a scaside pronontory.
in their assessment of Rritish students’ understanding of mathematics, Hart
and her colicagues discovered several vocabulary misconceptions that arise typ-
ically when students cross from ordinary English to mathematical English (i3)
The following excerpt of an interview with a 14-year-old girl illustrates the mis-
conceptions: (13, p. 213) )
Interviewer: 10 sweets are shared.between two boys so that one has
<4 more than the other. How many does cach get?
Faith: That's wrong, if you share they cach have 5, one can’t
have,4-more.

Kemme (16) points out two more language difficuities that arise for students

of secondary school mathematics:

3. Many mathematical expressions are hypothetical references, and
most adolescents find hypothetical reasoning very difficult until
they are between I4 and 16 years old. For example, both teachers
and texts begin the solution of many algebra probiems with **Let
the unknown number be x.* Taking: the perspective of an adoles-
cent, Kemnie says, **Why should you name things that are yet
unknown 1o you? That's a very unusual usc of language for 7th
grade pupiis. Morcover, it’s a type of hypothetical reasoning with
unknown objects.™ (16, p. 46)

4. Many mathematical expressions refer to concepts that are new. In
some cases. a coneept can remain unfamiliar to students even when
both téacher and textbook have taken its familiarity for granted.
For example. Hart reports about the British assessment: 't was
apparcnt when interviewing féurteen year olds that the words
‘perimeter” and “drea” were nat part of their normal vocabulary
and had to be redefined.’* (13, p. 213) In the United States, the
recent National Assessment of Educational Progress revealed that
more than half of ail thirtcen year olds confused the concepts of
arcar and perimeter. (6)

"~

Compounding the communication problem are the occasional textbook defini-
tions butit around Yerms and concepts which are themselves not well understood
For example, consider the following definition:

Polvhedron — a three-dimensional figure all of whose faces are

polygonal regions.
I the definition. *‘three-dimensional™’, **faces™, *‘polygonal™”, and *‘regions™
are all terms which could be misunderstood by many students.

Krulik (19) points out some examples of yét another difference between

mathematical and ordinary language:

Q
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5. Reading mathematical language often does not rely on left-to-right
eye movement. As an example, consider what your cyes do in a
careful reading of 2x — %2 = ¥ X,

More than likely, they move from the 3 to the 2 beneath it to the
x. and so on in a combined downward-then-to-the-right move-
nent.

- In their article about the solving of mathematics textbook problems,
Barnett, Sowder. and Vos (2) point out several other differences be-
tween ordinary language and mathematical language:

6. Mathematical word problems are more compact and conceptually
dense than ordinary prose. Often, several important ideas are

. squeezed into a single sentence, thus requiring a more aggressive

and thorough kind of reading than ordinarily required outside of

. mathematics. For example: *7To raisc moncy for new playgrouad
equipment, Mrs. Maple’s fifth-grade class sold 180 boxes of candy
at $1.50 a box and 40 Teshirts at $2.00 cach. If cach box of candy
and cach Tshirt costs the class $1.20 and the students wish to award
$3.00 in prize money, how much profit did the class make on the
sale?™”

7. Ordinary prose usually possesses a continuity of subject and ideas
from sentence to sentence and paragraph to paragraph. In text-
books. word problems usually appear in groups of similar prob-
jems andsstudents develop tendencics to process cach preolem in
the samie way. tendencies which are hard to break when other groups
of problems are encountered.

As a result of their mostly silent encounters with the quirks of mathematical

- Janguage, many students develop their own errant rules for mathematical fan-

guage. For example. Kent describes a misconception he has scen among St
dents. ore that s especially insidious because it is 2 subtle as it is misleading.

Challenged to simplify an algebraic expression fike 2Y1 l+ ¥ some students will
1

offer the answer 2y + h?, instead of the correct 2y + h. It might have been casy
Sor Kent to ascribe this to a mere oversight, if he had not probed further with one
parucular student. The interview revealed that the student, whose grades in
mathematics were not bad. treated operators (such as +) tht same as variables
(such s y and h). As a result, a numerator like 2yh + h? becomes nothing more
than 2 string of symbols, and if you eliminate an h from the denominator, you
nced only eliminate one /i from the numerator. Thus, a scemingly innocent but
very common mistake revealed a gross misunderstanding of mathematical lan-
guage. (I7)

From their observations and interviews of ninth-grade general mathematics

students, Confrey and Lanicr reported similar misunderstandings:
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“*Dectmals were strings of numbers to be treated slighely differendy. rather
than wholes and parts. Fractions were only one number over another. without

any image of pics. or ratios. or scgments. or partitions of sets. Mathematics scemed

1o be & set of symbols to operate on within rules and if those rules tailed to fit

perfectly or errors were made, then the siudent was leftwith no recourse, exeept

to perhaps try to manipulate the numbers more, and hope some answer would

come outeven.” (9. p. 555)

Another language-related misconeeption that is resistant to change is “"to
multiply means to make bigger.” Bell and his colicagues found that cven after
wstruction aimed at correcting the misconception, when students between the ages
ot 12 and 16 ran into trouble when they were asked to compute the cost, at 31.20
per gallon, of filling a 0.22 gallon can, two-thirds avoided multiplication **be-
cause you've gof'a lesser amount. 1ts under $1.20, so obviously it’s 1.20/0.22 or
something like that." (4. p. 405) N

Because of the differencés between ordinary language and mathematical lan-
guage dted above, researchers have generally shicd away from using ordinary
reading tests to measure the difficulty of reading mathematical language. Teach-
ers and others who evaluate textbooks should be just as cautious with statistics
that presumably reflect the reading level of a particular textbook. If the reading
gauge applied 15 general in nature, it may be inappropriate for that particular
mathematics textbook. .

] On the other hand, there is textbook reading rescarch that can be helpful. Earp
and Tanner conducted a study with a 6th grade textbock, but their results are likely
to be relevant to reading mathematics in higher grades. (10) They first counted
all the words wn the text that could be classified as *"mathematical words™* —that
is. words used in @ techmcal way, such as “‘average.” **commutative.” **quad-
rilateral,”” There were almost 200 such words in the text, and the researchers” in-
terviews indicated that there was only a 50 percent accuricy in the students’
comprehenston of the mathematical words. When the students were shown the
words i context. however. their comprehension increased. The first context was

_in the form of sentences from the text (**Some customary units for measuring
volume are the cubic inch, the cubic foot, and the cubic yard.'"), and the . ‘u-
dents’ overall comprehension accuracy increased by 8 percent. When sentences
provided stronger contexts (**Volume is a way of telling about the amount of space
i something such as a box or container.™"), the accuracy increased by another IS
percent There seem to be two implications for teachers. faced with explaining
the meaming of common mathematical terms in their text, students may be inac-
curate on many of them, second, their accuracy can improve considerably if they
are allowed to discuss the definitions of mathematical terms and to consider them
in context. . ) )

Cohen and Stover conducted a three-part study of obstacles to students” com-
prehension of word probiems. The research focused primarily on sixth-graders,
but the resuits have implications beyond the sixth grade. (8)

In the first part of the study the rescarchers asked a group of gifted sixth- and

‘
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cighth-graders t review typieal textbook word problems and to rewrite them (in

- the words directed to the students) to “"make them easier for other students who
have trouble with math."" From the rewritten problems Cohen and Stover iso-
lated three format vatables from among those that dominated the attention of the
student reviewers: the absence of a diagram: the presence of extraneous infor-
mation: and the presentation of numbers in an order other than the order in which
the numbers are computed.

In the sccond part of the study, the researchers tested two groups of average
sixthegraders to assess the influence of the three variables. One group worked on
problems like type A below and the other group worked on problems like type B
When they compared the two groups the rescarchers concluded that the three
vartables did mdeed affect the difficulty of word problems for average students

. a. the absence of a diagram
: : A. (no diagram) In Amyss class. 8 students have brown eyes. This

1s 25% of all the students in the class. How many students are
in the class? .

B. (diagram) Same problem with

b. the presence of extraneous information

A. (extrancous information) Mr. Hopkins® total commission for the month
of September was $216. of which he gave $108 to his son. $81 of the

' comnussion came from the sale of two color televisions and one short

wave radio. What percent of the total commission was the commission
A - from the sale of this clectronic equipment?
B. (no extrancous information) $81 is what percent of $216?
. the presentation of wumbers in the word problem in an order other than
. that required for the appropriate computational solution
A. (non-matching order) The Kant family has driven 270 miles since they
started their trip. The whole trip is 583 miles long. How many miles do
they have left tp go?
B. (matching order) The Kant family is driving on a 583-mile trip. They
have driven 270 miles since they started. How many miles do they have

‘ left to go? .

In the:third and final part of the study Cohen and Stover showed that students
can be traned to adjust word problems to decrease the difficulty presented by the
three variables. In the words of the researchers: “Instruction consisted simply of
alerting students to the fact that they should check to see if 2 word problem could
be diagrammed, or if extrancous information could be extracted, or if numbers
needed to be reordered 1 order to fit the algorithm required o solve the problem
This was then followed by drills in which cach trcatment group practiced the
modification . . . That training lasted only three class periods: the differences
between experimentals and controls were, nevertheless. substantial.”™ (8, pp. 194-
95) This suggests one clear implication for secondary school: students generally .
can benefit from discussions and training that help them to develop a skill in sort-
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mg out incoming date and for converting the data into meanfngful information
Diagramnung as a factor 1 solving problems appeared’in the study by Bell
and his colleagues. In the first part of the study, the researchers interviewed stu-
dents between the ages of 12 and 16 and reported. “"All of the pupils who were
intery iewed were completely unfamibiar with the notion of using an abstract dia-
gram to enable them to decde which particular arithmetic operation is appropri-
ate.”” (&, p. 407) When the students were provided with diagrams, however, the
researchers reported that the diagrams enabled the students to estimate solutions
and that they frequently led to a possible strategy for solving a particular prob-
fent. often one that was not derved from astandard algorithm For example. dia-
arams often led students to choose repeated addition in prefercnce w multiplication
As several stuties have noted, it is not only the weaker students who suffer
bewause of the specal and often unfamilar demands of reading and writing math-
ciaties. In s summary of three surveys in mathematics education (1 1). Fey quoted
& teacher inters wewed 1 one of the surveys. **There is abundant evidence to show
that we are encouraging superficial learning in scme of our (best students) Sure,
they do well on the tests. Our materials on hand encourage this. The algebra book.
for mstance, 1s pure abstraction. The really good memorizer can go right through
and not really have it at all.™™ (11, p. 498) The validity of this teacher’s suspi-
cions has been estabhished in a recent study by Clement et al. (7) They asked col-

lege students to do the following problen:
Write an equation for the followm&. statentent. *“There are six times as many
students a5 professors at ths university.” Use S for the number of students and
P for the number of professors.

On « written test with 150 calculus students, 37 percent missed lhc problem
Among 47 nonscience majors taking college algebra, the error rate was 57 per-
cent, The majority of students who had responded incorrectly had written 65 =
P. instead of 6P = S, and the researchers used interviews to determine the source
of ths reversal, They found two sources. Some students followed **word-order
matching, ' a Iiteral, direct mapping of the woids of English into the symbols of
algebra, For example. since *professors™ follows “*students™ which follows the
number 6 {n the problem, the equation becomes 6S = P. Another group of stu-
dents appeared to know that there were more students than professors. but still
wrote 68 = P. In the words of the researchers who interviewed them. “Appar-
ently the expression *6S" 1s used to indicate the larger group and "P* to indicate
the sialler group. The letter S 1s not understood as a variable that represents the
number of students but rather is treated hike a label or unit attached to the number
6. (7.p. 288) Like the teacher quoted in the Fey summary, Clementand his col-
leagues find some fault m secondary nathematics textbooks. They even point out
that sume popular secondary textbooks explicitly instruct students to transiate word
problems tntv eyuations by the often misguided word-order matching  Instead,
these researchers say, secondary students need more training in transiating relia-
bly *“between algebra and other symbol systems. such as Engiish, data tables. and
pictures.”” (7. p. 289)
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. Kieran's rescarch has highlighted another common misconception in stu-
dents” experience of algebra, one which seems to arise from a mistranslation be-
wveen real world experiences and the use of mathematical symbols. Kieran calls
the conceptual scheme responsible for the misconception the **redistribution
scheme’". and it is based on the notion that *taking something off one number
and adding it on to another does not change anything™" (18, p. 7), & notion that
causes the following error: 37 + x = 168 becomes 47 + x = 158.

Kieran suspects that the scheme can be traced back to a real-life redistribu-
tion scheme practiced by small children: ““We can cnvision the following scen-
ano: Three children dipping tnto a bag of candy and pulling out 5, 3, and 4 candics
respectively. One child (perhaps the one who pulled out three) suggests that the
child with 5 candies give away one of his to the child with only three. Then the
candies become more evenly distributed. In onc sense, nothing has changed; the
total number of candics has remained the same."’ (18, p. 16) In other words. tak-
g one number of f and adding it to another has not changed anything.

Communicating through Speaking & Listening

Because their roots are in reading research. textbook rescarch, or paper-pen-
cil testing, must of the studies discussed above have focused primarily on the
written word or symbol. These results indicate that translation skills should be a
significant part of a student’s training in secondary level mathematics. Therefore,
listening and speaking should be as much part of that training as reading and
writing. As Bauersfeld describes it: **Teaching and lcarning mathematics is re-
alized through lnenan interaction. Itis a kind of mutual influencing, an interde-
pendence of the actions of both tcacher and student on many levels. Itis not a
unilateral sender-receiver relation . . . The student’s reconstruction of meaning is
a construction via socigl negotiation about what is meant and about which per-
formance of meaning gets the teacher’s (or the peer’s) sanction.’” (3. p. 25)

One aspect of communicating mathematics where this social interaction is
importan s logical reasoning. In their study of seventh graders® logical reason-
ing skills, Gregory and Osborne found a high correlation between the frequency
of teachers’ use of conditional reasoning (¢.g.. “{f. . . then' sentences) and the
conditional reasoning skilis of the students. (12) Generally, the interplay of logic
and language—as in the use of ~some,” “"all,”” “*ncither.” **nor”*—is a vulner-
able area for adolescents and results in confusion as well as frequent misuse. They
need modelling from teachers as well as ample opportunities (o use logic and lan-
guage. Bye reports a-study in which high school students were shown a varicty
of shapes—circles. squares, and triangles—in (wo sizes and three colors, cach
labelled with a letter. The students were given the following task: ** Write the let-
ters of all the shapes that arc neither small and red nor big and green.” Eighty
percent of tenth-graders and sixty-five percent of students in grades cleven and |
twelve were unable to complete the task correctly. &)

Because their modelling is so important in communicating mathematics,
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teachers should cultivate consistency and an awareness of their own patterns of
language. A term hhe x* + b can be read as *“x squared plus b™, **the square of
xplus b, b added to x squared™’, **b added to the squarc of x.”” Although a
teachers 1nconststent usage of these phrases without explanation could confuse
students, a discussion of the equivalence of such phrases can help the students’
mathematical communication skills.

Conclusion

The interplay of language with mathematics is a subject requiring much more
rescarch. A comprehensive bibliography of the research done so far appears in
“*Language and Mathematcal Education’” by Austin and Howson. (1)

Futyre research may highhght critieal aspects of communicating mathemat-
s, butat will not lessen teachers' responsibilitics. Because students can develop
deep yet surprisingly hidden misconceptions about mathematics. guiding stu-
dents o articulate their experience of mathematics and listening carefuily to them
will always be a mgor responsibility of mathematics teachers. Because text-
bovks fall very short of guiding students to translate between symbolic n.athe-
matics and other systenss such as English, data tables, and pictures, teachers mus
bear the major rc.xpun.snbihi) for helping students to develop these translation shills
Finally, because students model much of their behavior in communicating math-
emativs on what they experience 1n assroom interactions, mathematics teachers
must be ever alert to their own patterns in mathematical translation and com-
munication.
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1 am confused about teaching mathematics to high school students
with fifth- and sixth-grade skills. Sometimes I think we expect too
much of them in the mathematics classroem; at other times, 1
‘think we expect too little of them. Is there any research
information about teaching these needy students?

The dictionary’s definuion of *‘remedial’” is clear and simple: *‘intended to
correct or improve one’s skill. in a specified arca.” As it applics to the learning
of mathematies, however, the definition is incomplete. It implies that mathe-
matical skills may be all that need correction or improvement, and for a large
aumber of secondary school students, that is an oversimplified prescription. They
need to correct and improve their skills, but their needs for correction run deeper,
1o the levels of understanding concepts and approaches to the learning of math-
ematics. , 2

Unfortunately, some secondary school remedial programs neglect the deeper
levels and target only the skill level, and even then they usually consider only those
skills that can be measured casily through standardized testing. Yet rescarch has
been clear m 1ts imphications about students’ needs in mathematics: conceptual
misunderstandings and skewed approaches (0 learning mathematics arc so com-
mon among teenagers that instruction which ignores them can only be partially
successful in the long run.

Becaude most of the other chapters in this book address various student mis-
takes and misconceptions, the theme of remediation runs through the entire book.
The purpose of this chapter 1s ©© bring together the results and recommendation’s
from those other chapters in a way that nay highlighf the threads that bind them
together and the recommendations for instruction that follow from them, Con-
sequently, the chapter is organized in the following way. First, topic by topic, we
review some of the major areas of need for students as the other chapters have
deseribed them. Second, some themes that bind these needs together will be
idenuficd. As Confrey has pointed out, a studer*s performance in mathematics
has twq aspects; a private onc where comprehension resides, and a public one where
performance is judged. (7) Those teachers who are interested in remediation must
probe both aspects; therefore, the third section lists major recommendations for
\nstruction that can touch both the public and private aspects of learning mathe-
matics.
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Mathematics Remediation

Areas of Need '

Solnng problems. By the ume they reach high school. most students com-
pute well enough with whole numbers so that the need for remediation in this area
s not as pronounced as 1t is for other topics. However, when it comes to using
computational algorithms to slve problems - <veri one-step word problems- -many
secondary students need considerable heip. The help they need is often in the
strategtes used. not m finding the correct answer. Booth found that many British
students. at all secondary levels, avoid using the four operations for whole-num-
ber problems whenever they can. Instead. they rely on “*child-methods™ such as
counting, when computanonal algorithms for the four operations would serve them
better. Such child-methods often fead to correct answers when whole-number
problems are involved and counting is possible, but students” lack of understand-
ing of the uses of the four operations hurts them when the situation changes, for
example, when fractions are brought into play Without a sensc of the meaning
of addition and without any apparent recourse to a strategy like counting, many
students become lost with exercises like ¥ + Y2 = 2. They often draw a wrang
analogy with whole-number addition, which they have learned but whose mean-
g they have never fully grasped. and they add numerators and denominators:
v+ Y2 = ¥s.(2) In order to carn the full range of remedial needs common to
the topic of problem solving. teachers should read the chapter *Problem Solv-
mg. The Life Force of Mathematics Instruction, Part One. ™ In brief, several re-
searchers have described how they perceive weak problem solvers differing {rom
strong problem solvers and we.repeat their [ists.

fn Wlimbey s summary, weak problem solvers stand out in the following ways:

I. They fail to obscrvc and use all the rélevant facts of a problem.

2. They fail to approach probiems in a systematic. step-by-step manner. They

make illogical leaps. jumping to conclusions without checking them.

. They fail to spell out fully any relationships within a particular problem

. They are sloppy and inaccurate in collecgng information and in carrying
out mental activities. (23. 31)

Confrrey, Lanter, and their colleagues have conducted a study of ninth-grade
general mathematies coyggses. (8, 21) One facet of the study concerned the abil-
ities that the Russtan rescarcher Krutetshii has associated with good mathematics
students: *

1. Information gathermng. the ability t discern the mathematical structure in

a given problem.

2. Generalization. the ability to plduc a particular case under a known gen-
eral concept or to see something general from particular cases— that is. to
form a concepl.

3. Reversibiluy. the abihty to change from one train of thought to its reverse,
to reverse mathematical processes, such as inverse operations (¢.g.. mul-
uplication.division, additon/subtraction), and direct and converse theo-
rems.

4
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4. Flexibilzy, the ability to aceept a variety of methods and to develop case
and efficiency with them. i

5. Curtarlment: the ability to shorten mathematical processes—for example,
noting the cancellation possibilitics in ¥ x ¥ x ¥ and concluding quickly
that the product is %5. (8, 18)

The researchers studicd general mathematics students in the light of the five

abilities and they found the fotlowing patterns common (0 the students:

1. Information gathermg. When general mathematics students were given
problems with essential information missing, problems with superfluous
information, or probiems with no questions attached at all, they would fre-

. quently begin to calculate wildly. in any way possibic using the available
aumbers. Often they didn’t even notice that a particular problem had no
question. . )

_Generahzanon. Irrclevent variables—for example, the position of a
triangle on the problem paper—often distracted general mathematics
studeats.

3. Reversibilire. Given 17 x 13 = 221 and asked t0 find 221 + 13 = ?, many
general mathematics students attempted the entire calculation rather than
sumply reversing and immediately noting that *ac answer must be 17.

4. Flexibility. Shown several methods for sol ing problems. many of the stu-
dents could not keep the different methods straight and. in fact. concen-
trating on a second method often hindered their reconstruction of the first
method. "

5. Curtarlment. Many of the general mathematics students observed and in-
terviewed 1n the study were unable or unwilling to shorten the logical pro-
gression of steps required for solving a problem and, when they did shorten
a logical progression successfully, they were often unable to reconstruct the
steps they had used. (8) J—.

Fractions. One of the critical arcas of need for many secondary students is
fractions. which is the topic of a scparate chapter: **Understanding Fractions: A
Prerequisite for Suceess in Secondary School Mathematics.”” According to the
Natioral Assessment of Educational Progress (NAEP), only about 40 percent of :
seventeen-year-olds have mastered basic computation with fractions. with partic- s
ular trouble oceurring m the exercises involving unlike denominators and mixed
fractions. (3) Even when computation with fractions is done correctly, however,

W 1s often done with little understanding, as evidenced by the poor student per-
formance on NAEP exercises involving the estimation of the sum of two frac-
tions. '

The variety of errors made by students in computing with fractions makes it
a particularly knotty topic for remedial instruction. Lankford documented 22 dif-
ferent crrors students make in figuring out % — %2 = ? (22). Furthermore, once
the type of error has been identified, it is also important to trace the source. For
example, Vinner et al. presented o students between the ages of 13 and 15 sev-
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eral strmghtforward fraction addition problems such as "2 + 2% = 2, (29) Even
among those who made the mistahe of adding numerators and adding dcnonu—
nators., the rescarchers were able to isolate several sourees, mcluding a wronb

analogy with fraction multiplication (If Y2 X % = :3" = %, then
. 2
probably Y2 + % = !) : 5 = s and a wrong gerpretation of symbols (ro

‘

real meaning 15 attached to the fraction line between numerator and denominator,
s0 since addition 15 called for, students figure they might as well add the things
that can be paired together, nariely, numierators with numerators, denominators
with denominators). )

Decumals. The NAEP assessment revealed that about than 60 percent of sev-
enteen-year-olds cannot Wenufy .625 as the decimal equivalentof %, Thus., frac-
ton-dectmal equivalency 1s a topie where many secondary students necd remedial
help, as 15 the pie of decimal place value. Bell and his colleagues condugted a
study among less able fourteen-year-old British students to identify, then to re-
mediate, common nustahes and 'misconceptions about decimals. (1) Their inter-
views revealed place-value misconccpuons such as **.45 hours is 45 minutes** and
*0.8 . . . that’s about an cighth.”

Another rather deep nusconception identified by Bell et al. was the convie-
tion that, no matter the numbers being multiplied. **multiplication gives an an-
swer bigger than either of the numbers being multiplied.™ This misconception
tripped up many students on problems like **If gasoline is $1.20 a gallon, what
15 the cost of filling a 0.22 gallon can?™* Even students who had recognized mul-
tplication as the route to solution when the capacity of the can was 8.6 gallons,
were thrown off by getting a price smaller than $1.20 when they multiplied
$1.20x0.22. They were inchned to pull back from multiplication and to look for
away 1 produce a price bigger than $1.20. The research tcam designed some re-
medial instruction aimed at these decimal difficultics, we will discuss their strat-
egies later in this chapter.

Percents. According to the NAEP, the overall performance of secondary stu-
dents on percent exercises was extremely low. (3) In particular, only dboul half
of seventeen-year-okds rCsponde correctly to basic concept exercises like, “‘Ex-
press 9,100 as a percent,” and only about a third of scventeen-year-olds were
suceessful on exercises involving any sort of operation with, or application of,
percents - for example. **What is 4 percent of 757°

Meuasurement, According to the researchers who reported the results of the
Natwonal Assessment of Educetional Progress in mathematics, ** Performance on
perineter, ared, and volume exercises was among the poorest of any contentarea
on the assessment. ™ (3, p. 98) The frequency and severity of measurement mis-
tahes and misunderstendings is <lear from the following NAEP result. less than
20 percent of seventeen-year-olds were suceessful in finding the arca of the right
triangle:
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. Booth reported that a disappoutingly siall percentage of British teenagers were
successfulron a sinmlar exercise, but he sensed the influcuce of the child-method
of counting on many students’ approaches (o arca problems and,"in fact, to ail
measurement probiems. (2) Whereas less than 50 percent of fourteen-year-olds
were able to find the arca.of

Jcm

. . 4cm
during interviews, nearly twice as many found the arca of a similar triangle when
At was presented on a grid, because. Booth claims, counting of units was possi-
bie

- N .

.

Geomertry. For a more thorough treatment of the facets of geometry where
studénts struggle most frequently, readers should refer to the chapters “>The Path
to Formal Proof™" and *The Learning and Teaching of Geometry.™ Perhaps the
area where need shows up most clearly is proof, and though proof is not & topic
to which the word *‘remediation’” is usuatly attached, it is a topic where many
students® skills are w dire need of comection and improvement. The study by Senk
and Usiskin showed that even among students who have had a year of high school
geometry. gnly about haif can do more than simple geometric proofs. (25, 28)
Worse yet, their study showed that more than 2 third of students who enter high
school geometry courses do so without the appropriate prerequisitc knowiledge and :
skulls, such as knowledge of the various propertics of geonetric figures (*The sum
of the angles of any triangle cquals 180°) and the interrelationships among geo-
metric figures (**Any square is a rectangle, but not all rectangles arc squares.™) *

Algebra. Agawn, readers who want a more detailed description of student dif-
ficulties with algebra should read the chapter **The Learning and Teaching of Al-
gebra."" Bnefly. the difficulties that scer the deepest and most resistant to change

.
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are students” understanding of what an equation is and what a variable is. Kier-
an’s research has led her to conclude that many students enter algebra without an
appropriate bridge with arithmetic. and since arithmetic equations are action
statements in which numbers are combined to produce an answer. the same con-
«eption takes root 1n algebra. (13, 17) What these students miss is the aspect of
eyuaralence n the usc of equations, and so fail into numerous traps as they strug

gle through beginning algebra. For eadmple, a common mistake arising from
overeinphasizing the action aspect of equations is to approach un equation like
3x + 2= 14 + 12 by marching through from lcft to right and solving
Ix + 2 = I4asx = 4, and ignoring the influence of + 12 on the statement of
equivalence.

The work of Wagner. the work of Hart. and the work of Clement, Lochhead
and their colleagues have illustrated the variety of difficulties that can arise for
students 1f thewr understanding of the meaning of variable is at all skewed (6. 12,
24, 30) For example, there are many students for whom variables in equations are
lab.is tor ubjects, rather than number representatives. Under the influence of that
nusconception, a statemert like, *There are 10 times as many words (W) as sen-
tences (81,7 15 often transiated into the equation 10W = S, rather than the cor-
reet 10S = W,

Behind the Mistakes

By the ume students reach high school, they have behind them enough years
of mathematies to have strung and hardencd impressions about the subject what
it 15,about, how 1t works, why it is taught, and how it should be leamed. For many
students, those impressions are far from conducive to good mathematicy learn
tng. As Confrey found out in her student interviews, it is not unconumon for stu-
dents to mamtain that rules such as those for lining up decimal points in addition
and for ““counung 1" decimial points in multiplication could just as casily be re-
versed. (7)

Titus. the nustakes that require remediation in secondary school mathematics
are often the outgrowths of impoverished impressions of mathemaies. Further-
more, ds Lochliead pownts out, older students who are slow in learning mathe-
maties are probably stuck with poor mathematical learning skills. (23) Therefore,
i order for an attempt at remediation o have any hope for success, it must deal
with fulse unpresstons and poor learning skills as well as with the mistakes they
cngender. The task 1s o difficult one, graphically described by Lochhead. **Poor
learning and thinking habits can perpetuate misconceptions about mathematics
These mizconceptions wan 10 rn act o discourage careful thinking by making it
appear unrewarding. The task fuced by the teacher of remedial mathematics is to
break this vicious cycle.™ (23, p.3) Whimbey's list, cited earlicr in this chapter,
encapsulates sume of those poor fearning skills. inefficient observation and use
of retevant fuets, sloppy and naceurate collecting of information, « failure to pro-
ceed through solutions 10 a step-by-step fashion. settling instead on illogical leaps
to conclusion without checking.
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Lankford noted a special case of the fast phenomenon when he interviewed
seventh-graders to determine the major behavioral differences between students
who are 2oud at computation and students who are poor at it. He found that the
poor computers he observed often switched to something else that would produce
an answer whenever they ran into difficulties using & computational procedure.
Frequently. their chosen procedure was remote from the proper procedure. but
getting an answer seemed the dominant goal. (22)

The belief that the primary daim in mathematics is 10 get answers is wide-
spread among mathematics students. even among those who are relatively suc-
cessful mathematics leamers. Itis especially common aniong the less successful,
however. and 1s an imposing obstacle to effective remediation. In their study of
ninth-gradie general mathematics students. Confréy and Lanier reported: **We found
evidence of this focus or the answer in students pursuit of the problems in in-
formation gathering. in their lack of flexibility and subsequent preference for a
single method, n thewr quick. but local generalizations and in their erroneous
curtailnient.”” (8, p. 3534

A related theme dentified by Confrey and Lanier was symbolic maniptda-
tions “*Mathematics seemed to be a set of symbols to be operated on within rules
and 1f those rules fatled to fit perfectly or errors were made, then the student was
feft with no recourse. except to perhaps try to manipulate the numbers more. and
hope some answer would come out even.” (8. p. 555) As reported in the chapter
“Individual Differences Among Mathenatics Learners.” rescarch has shown that
many students at all sccondary levels are still at the developmental level where
fearning must be facihtated by concrete and pictorial representations of concepts.
What Confrey and Lanier have obscrved is the nightmare that can arise when those
representations are NOt a consistent part of classroom instruction for the students
who require them.

Remedial Teaching Stratcgies

Hart reported on the extensive British study. similar in purpose and scope to
NAEP, calied Concepts 1n Secondary Mathematics and Science (CSMS). The
subjects were students between the ages of 11 and 16, and one of the more strik-
ing conclusions was the widespicad need for concrete and pictorial. ‘as well as
symbolic, representations of concepts. Hart wrote: “It is impossible o present
abstract raathemaucs to all types of children and expect then to get something out
of 1t. It is much more likely that haif the class will ignore what is being said be-
cause the base on which the abstraction can be built docs rot exist.” (12, p. 210)

Several studies have shown the effectiveness of using concrete and pictorial
representations to teach adolescents fractions and concepts related to fractions.
Karplus. Kurtz, and their collcagues have conducted a series of studics of pro-
portional reasoning. Two conclusions from their work are:

I. Adolescents’ progress with proportional reasoning skills does not hinge on

cognitive development alone. Often their ignorance of or inability to use
- ]

29
23




Mathematics Remediation

-

fractions stands in their way also. (16)

. Using concrete ads to measure proportional amounts, many adolescents
can improve their proportional reasoning shills significanty, and in a way
that leaves them more motivated to learn such skills than are students who
appivach proportional learning without concrete aids. (20)

Dees worked with remedial students in graces 10, 11, ond 12, She divided e
students 1nto two groups and adoumstered two tests to both groups on fraction
concepts and shalls. equivalence and comparison of fractions, arca and number
line models of fractions. and addition and subtraction of fractions. One of the tests
was writen, the other involved only conerete or manipulable tasks. One group
took the woncrete test first, then the written test, the other group took the tests in
reverse order. Students who took the concrete test first were more successful on
the wnitten test than.the other group, unplyng that learning probably oceurred
during the administration of the concrete test. (10)

In a remedial program developed from their research, Hershhowitz er al. used
the followmg chart, with success, when teaching students how to expand, vom-
pare and add fractions. They suggest that its use encourages students t see frac-
tons as uantities. and not as separate whole numbers paired together, (14)
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As described in the chapter **The Leaming and Teaching of Algebra,™ Kieran
and Herseov 1o determined that many difficulties encountered by students in al-
gebra result from ther having made some false generalizations from, and weak
bridges to, arithmetic. Since the focus of the use of the cqual sign in arithmetic
15 tu, desunbe action resulting from numerical compntations, it is not always a
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. straghttorward adjustment for students to deal with cqumiz)ns as equivalence re-
jations. Kieran and Herscovics report success using & tarefully plafned instruc-
tional st quence that bridges arithmetic and algebra. At one critical juncture, when
the students are able to construct arithmetic identities like 5 X 5 =130~ 5, they
are asked to consider identities with a number covered up by a finger:

~ ﬂ+6—2=|0+8—-5

Later. more pictorial and symbohe representations of cquations are used, but the
rescarchers are convinced that 1t 1 essential to lead in to the later representations
with this more concrete representation. (13,17

Also reported i the algebra chapter is the finding by Rosnick and Clement

that, by the time many students reach college, they have swung 0o far the other
way mn thewr understanding of the meaning of equations. By then they have lost
much of the sense of action in equations, secing them instead as static conipari-
sons of labels. Thus 6S = P is read as *“There are six times as many S's as P's,”
rather than the mathematicaily correct “*P is the number equal to 6 times S*° or
““Fhere are six times as many P's as $’s.”* On the basis of their rescarch Rosnick
and Clement make the following two recommendations: '

1. Teachers should emphasize that variables stand for number. They must be
conststent in this emphasis, even watching that they set up equations with
statements like ~Let A stand for the number of apples.’ and not “Let A
stand for apples.”

_Teachers shouli watch for an inclination on the part of students to view
‘ equations 1n a static way and o cmphasize to them that equations represent
active operations on variables that create an equality. (24)

Threadgill-Sowder and Jwif conducted a study in which they compared con-
crete versus symbolic materials in teaching logical connectives like or”, “and’.
and “not’’ to Tth-graders. The concrete materials included auribute blocks of
various shapes. The mstruction took three class sessions and, when it was com-
plete. a test on logical connectives was taken by the students. Among the lower
achtevers in the group, those who learned through the use of the concrete mate-
nads did better on the test than the group of low achievers who leamed through
the symbohie approach..(26) Suggestions for activities using attribute blocks and
pictorial methods to teach logical connectives to junior high students can be found
in the book Actavities for TOPS. A Program in the Teaching of Problem Solving
h

Many secondary students require remediation for their arithmetic skilly  Kulm
has compiled a collection of suggestions for remediating the arithmetic skills of
ninth-grade general mathematics students. (1N

According to the study by Confrey and Lanier, remedial success in the gen-
cral mathematics classroom may require some carcful self-examination on the par
of general mathematies teachers. In particular, when the researchers observed
teachers who taught both general mathematics and algebra, and compared their
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behavior m cach type of class, they found that they tend to act differently from
one class to the other: .

I. They give the general mathematies students much less direct instruction

«[n light of the evidence. descuibed 1n the chapter **Effective Mathematics

Fzaching™. that successful juntor high mathematics teachers spend more

ume 1 Jlass discussion and lecture. this phenomenon in general mathe-

. matics classrooms needs to be changed.)

. Though general mathematics students spend most of their class time doing
homework and individual problems. they get less assistance with their
seatworh than do their counterparts in aigebra. They also get less encour-

_ agement and less oppertunity for discussion. (21)

“Lanter has pownted out that general mathematics classes lack the *‘ripple ef
fect seen in algebra classes. where a core group of students often grasp content
quickly, respond to the teacher at crincal moments, and. in doing 50, help 0
communicate the content to other students. (21)

According to Locbhead, successful remedial programs must be quite differ-
ent from the typreal general mathematics program described by Larier In such
programs. “students must be shaken out of the memorize-regurgitate cycle.” they
must  place mggor emphasis on getting students to think actively.™ and their stu-
dents  must fearn to-discover their own approaches to solving simple problems
before they can appreciate the more elegant designs of others ™ (23. p. 14)

The hind of student-centered, process-enriched approach to remedial teach-
ing that Luchhead recommends was at the center of an experiment in instruction
warmied out in the Calgary Jumor High School Mathematics Project: Although its
purpose Was not remediation. its design could be adapted and. since the focus was
the dufficult topre of fractions., remedial teachers should take note of the re<ults,

The objective of the eleven and one-half week program was to facilitate and
ennich seventh-graders’ learmng of fracuons through mathematical investiga-
tons. [n particular, the students experimented with concrete materials, recorded
what happened 1n the eaperiments, formulated questions. wrote up accounts of
the eaperimental results, and applied the results to practical situations  Not only
did the expermiental group’s achievement improve significantly when they were
compared with a group of students learming from a regular textbook. but they also
displayed sigmficantly greater engoyment of fractions than the students in the regular
group. Furthermore. the researchers noted a signifivarnt improvement in the ex-
perimental students” ability o give eaplanations. probably due to their reg ! re-
cording of experimental resuits. (11)

All of the research ited so far leads to the conclusion that educators must de-
sign remedial programs in which students are taught to think. to experiment. and
o discuss. These are not sumple goals. and teachers should take advantage of every
prorven nstructional aid they van. Concrete materials have proven their worth in
remedial mstruction and so. in recent years. have handheld calculators

in their study of student difficulties wath decimals, Bell et al. designed some
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calculator-based wstruction to remediate two of the most glaring difticultics: a lack
of understanding of decimal place value and deep-rooted conviction that **mul-
uphcatien always makes bigger.™ (1) They were able to produce significant im-
provement 1 the students’ understanding of place value by involving them in
exercises hke the game called Getting Closer, played in pairs. in which one stu-
dent chooses a low number, the other a high number, and cach puts his or her
number on a calculator screen. The students then take turns, with the first adding
any non-whole number cach time to the number on the screen while the second
student. with the higher number. subtracts non-whole numbers. Thus. the num-
bers on the two calculator screens approach each other. The first player to pass
the number currently on the other player’s screen is the loser. The players learn
quickly that a-knowledge of place value is an important advantage when the two
numbers are close to each other.

There was also improvement, though not as significant, in students’ under-
standing of the effects of multiplication. One of the tcaching strategics was o in-
volve the students in a game called Target: Here are the rules.

I. Player | enters any number onto the calculator.

2. Player 2 has to muduply this by another number so that the answer will be

as near to the target number, 100. as possible.
. Player | then mudtiplies this new answer, trying to get still nearer 10 100.

4. The players take turns until one player “hits™ the target by getting any

pumber between 100 and 101 on the calculator display.

Creswell and Vaughn designed calculator materials to teach decimals and
percents, over an cight-weck period, to ninth-grade general mathematics stu-
dents. On a posttest measuring the level of achievement over the eight weeks, the
calculator group scored significantly higher than a group working during the same
period with a standard textbook. (9)

Ninth-grade general mathematics was also the focus of Toole’s calculator study
For six months, students were taught as usual, with the exception of one day &
week when they used caleulators. In the six months between pretests and post-
tests. the students gained cight months more than a similar group who used no
calcylators. The breakdown into subtest gains was as follows: 7-month gain in
computation, 3-month gain in concepts. I-year gain in applications. (27)

Microcomputers also promise help in remediation  Howe and his colleagues
conducted a study of the effects of integrating the teaching of programming in the
LOGO language tnto a remedial mathematics program for middle-school stu-
dents. The rescarchers supplemented the students® normal quota of mathematics
work with microcomputer work one hour per week. Programming in LOGO was
taught during the first year: mathematical applications of LOGO were taught the
second year. At the end of the experiment. the LOGO students were marginally
better than ther non-computer peers in algebra topics like solving for vand form-
1Ing cquanons. Considering the growwng evidence of the importance of student
awarencss. thinking. and discussion in remedial classrooms., perhaps the most

(2]
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stgmificant result vf the study was the observed greater propensity of the experi-
mental students o discuss mathematical issaes and o explamn their own mathe-
matical difficulties. (15)

Conclusion

Research that touches on remediation in sceondary school mathematics lewds
 one overriding conclusion, woorder to corret and improse students” mathe-
matival learning, s wot enough to conwentrate an isolated mistahes or on iso-
lated skills.

Short-termt efforts produce. at best, short-term effects, and we mathematics
educators must i for effects that last longer. The teuching that will produce those
effects must include careful vbservation and diagnosis of the sources of mathe-
matical difficulties and efforts w change remedial students” thinking shills and their
ways of approaching mathematies, as well as efforts  remediate therr shills in
finding correet mathematical answers.
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PROBLEM SOLVING: THE LIFE
FORCE OF MATHEMATICS
INSTRUCTION

PART ONE




Many of my students make quick attempts to solve problems.
Whenever the attempts fail, they just as quickly give up on solving
the problems. What are some of the underlying reasons for this
tendency? More generally, what sets apart persistent and successfuj

problem solvers from unsuccessful problem solvers?

Problem sulving 15 the direction toward which all mathematics ins(réclion
should pownt, with teachers always alert for opportunities to widen, deep ‘/n. and
o ennch therr stedents’ problem solving ability. Problem solving is. undejstanda-
bly. une 0t the mayur concerns of secondary school mathematics teachdrs, with
close ties to all of their other curricular concerns. Thus, it is also atheme!that runs
through all of these Research Withut Reach chapters, touching some 'topics di-
rectly. as tn the case of geometric proof, and touching others indirectly, as in the

discussions about estimation and remediation. [ .

" As o topic fur research, problem solving has afoused intense interest among .

. varted groups. The results, opinions, and speculations of rcscarche,rx,Zvriling about
problem solving fill volumes. Often the questions they have ruis‘cz/ and the tasks
they have undertahen seem far removed from the classroom For ¢xample. what
role does memory play 1 problem solving, and how should in;érmmion be or-

gamized 1n memory lor use wn problem solving? What can be learned from the ar-
tticwad mtelhgence of soplusticated computers about the efficieiit organization of
mtormaton for sulving mathematical problems? What are lhq) relationships be-
tween mathematical problem solving and problem solving in gther areas— for ex-
ample, in science? .

Other resedarchers have studied the numerous aspects of {he classroom teach-
g of problem solving. Iromically. the w wespread mterest in ;’\mblcm solving raises
& problem for teachers. how o extract from the mass of urti(;ics. reports. and hooks
on problent sulving what 15 most relevant to their classroom mathematics instruc-
won. The teacher whose question heads this report has ('ocuscd on a very basic
concern th probleni solving instruction. students not l){inking through, or even
about. the mathematteal problems they encounter  That this condition is wide-
spread was confirmed by the most recent National Assessment of Educational
Progress (NAEP) in mathematies, which revealed that mgny students attempt to
apply « single vperation t all the numbers in any problem they confront, even
pumbers that are extrancous t the solution. Thus. ncarly a guarter of the thir-
teen-year-olds tested solved the following word problem by multiplying 2 % 5
x $2 = 520. "One rabbit cats 2 pounds of food each weck. There are 52 weeks
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i a year. How much tood will 5 rubbits eat in one week?” Another exercise asked
the students to decide un missing nformation. **Maria left at noon to take a trip
on her bicycle. She rode 5 miles each hour. Later that afternoon. Amanda de-
uded 0 go after her. Amanda rode 10 miles cach hour. What else would you need
to hnow 1n order to find our how far the two girls rode before Amanda caught
Marta?”" More than half of the thirteen-year-olds and almost a third of the sev-
enteen-year-olds could not identify what additional information would be needed
to solve the problem. (4) )

In hight of the NAEP results and the allied concerns of the teachers who were
nterviewed for Research Within Reach. Secondary School Mathematics, this
chapter and the one that follows have one primary focus What can sccondary
schowl teachers do to expand and enrich their students™ thinking about mathe-
matical problems? As a first step. we discuss what is known about sudents' thinking
as they face mathematical problems.

In this discusston a “*problem™ refers to a situation **in which an individual
or group 1s called upon to perform a task for which there is no readily accessible
algorthm which deternunes completely the method of solution ™™ (13.p 287) hus,
problent sols g refers to new terrain for an individual, where no immediate path
o solution appears. According to this definition. a textbook word problem may
or may not be a problem for @ particular student, depending-bn whether that stu-
dent has a routine procedure that can lead directly to a solution.

Students’ Thinking Processes

Researchers have been abie to learn much about the thinking used by prob-
lern solvers. In briet, students” success at problem solving seems to be affected
by thewr cognitive developmert and by their previous expericnce in, and impres-
srons of. mathematics, Suceessful problem solvers have much in common. but
they can ditfer from one another n their styles and approaches to problems Fi-
nally. students can improve thewr problem-solving performance by attending to
appropriate guidelines, m particular, Polya’s four phases of good problem solv-
g (10, 14, 16)

1 understanding the problem

2. devising a plan

3. carrying out the plan
. looking back at the solution
These conclusions are the results of many studics over the last couple of decades,
studies that used a variety of research methods. Observation of individual prob-
lem solvers at work has been used extensively, and techniques are now sophisti-
cated enough to allow for observation of whole groups. interviews of problem
solvers during and after problem solvirg sessions have formed the core of many
studies. Other studies have vompared different instructional approaches to prob-
lem solving. then compared the problem solving performance of students after the
instruction.
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Attempts to relate problem solving ability to other gognitive abilitics—such
as spatial abihty—have yrelded few firm conclusions abaut the nature of problem
solving. except to suggest that problem-solving ability is not a single trait That
s, ditterent nuxtures of abiliues are needed for different classes of problems (1)
Problem-solving ability and computational ability have been found to be related
tor younger children, but they are only remotely related for students of college
age. (13)

Companng the buhaviors, thought processes’ and strategies of snccessful
problem solvers wath those of lesy successful problem solvers has yielded some
pronusing resuits. In recent years, this approach has grown more useful because
observation techmques have been developed that can capture some of the subtle-
ties of successful probiem solving. Thirty years ago. before the techniques were
developed and long before NAEP underscored the fauity thinking of unsuccess-
ful problem solvers, Bloom and Broder conducted a study of problem solving
among colicge students and were able to pinpoint some of the differences be-
tween good and poor problem solvers. (2) They noted some of the same phenom-
ena that are evadent from NAEP. For example. unsuccessful problem solvers spent
httle tme considering questions but chose answers on the basis of a few clues,
such as a fechng. an upression, or a guess. In contrast. good probiem solvers
pulled key 1deas out of probiems and brought relevant information to bear on the
problems. por problem solvers did not. even though they often knew the needed
wformation. 'n short, good probiem solvers were much more active than poor
problem solvers. In a recent article discussing the Bloom-Broder study, Whim-
bey has suggested that there are *two major characteristics that distinguish suc-
cessful from unsuceessful stadents. the step-by-step approach: and carefuiness—
the concern and quick retracking when ideas become confusing. the rechecking.
reviewing, and rercadng to be sure that errors haven't crept in. that nothing is
overlooked.™ (21, p. 361

Tins rescarch led to studhes of the thought p. cesses that sct successful prob-
lem solvers apart. The model for much of this work is that proposcd by the Rus-
san rescarcher Krutctsku, whose observations of gifted mathematics students led
o hts concluston that a magor difference between good and poor problem solvers
hes wn thewr pereeption of the important clements of problems. In particular. Kru-
tetskii noted the following about problem perception:

I. Good problem solvers can distinguish relevant from irrelevant information

wn problems.

. Good problem solvers can see quickly and accurately the mathematical
structure of a problem. In fact. talented problem solvers have what Kru-
tetskn termed 2 mathematical frame of mind. that is, the tendency to im-
pose a mathematcal structure on their perceptions of the world.

. Good problem solvers can generalize across a wide range of problems. Thus,
they night recogmize the comparison of similar triangles as a common thread
that runs through a variety of problems, and so would be inclined to look

t

(]

N

61




ERIC

Aruitoxt provided by Eic:

« 3

Problem Solving. |

for that thread in many geometrie problems.

4. Good problém solvers can reniember a problem’ miathematical structure
for a long ume, Thus, 1f g good problem solver has solved. or seen solved,
a problemn which two or more Similar triangles are compared, and if the
same problem 1s posed again several weeks later. he or she will be in-
chined to recognize quichly that similar triangles are involved (1. 13)

[hough goud problem solvers haye characteristics i comumon that set them
apart irom less suceesstul problem solvers. research show s that there is plenty of
room tor mdi dual styles 10 problem-solving In fact, Krutetskii found some ™" very
capable’” students 1n mathematical problem solving who could work only in a
symbolic mode, while other equally capable students could solve problems only
through the use of diagrams and pietures. The students went to considerable lengths
to use therr preferred sty les, even on problems where Krutetskii did not think them
appropriate. (1.11) Several North American rescarchers have produced similar
tndings. For example, Stiver ashed exghth-graders to separate a collection of
problems mto categortes of probiems which they judged to be mathematically re-
lated. The study confirmed a relationship betw een students” pereeptions of math-
ematical strecture in poblems and their problem-solving competence Specifically.
unsttceessiul problem solvers were more inclined to sort problems according to
question fornt, contentual details, or the presence of aconunon concept than ac-
cording to mathematical structure. For example. the two probicis below are not
closely related i mathematieal structure. The first imolves a direct application
of least common muluples where time is the unknown quantity and the second
mvolves an equation m one variable where the number of students is the un-
Anown. Both problems do myvolve time, however, and Silver found that unsugc-
cesstul problem solvers were more mehned than suceesstul problem solvers to group
two such problems together as mathematically related. (i8.19)

A, Nicholat and Natashe are tramed «ircus bears who perform thew act while
riding bicy cles around a circus ring. Natashe can complete the circle in 4
minutes. but it takes Nichole, - vautes to make the entire trip They start
at the same pownt, and their act s v.v: When they again reach the starting
pomt at the same time. How long does their actlast?

B. There arc 8 boyy and 16 girls @ an cleventh gragde conmmittee meeting Every
tew nuntes, one boy and one girl leave together. How many boy-girl pairs
must leave so that there are exactly three tmes as many girls as boys left
at the meetng?

Ihere are othet charactenistics that set successful problem solvers apart from
unsuceesstul problem solvers. For example, the range of strategies used in solv-
g problems appears to be important. Webb worked with forty high school stu-
dents on an individual basts. ashing them to think aloud as they solved a series -
ot problems trom algebra, geometry. and analytic geometty. The interview data,
matched against the studenis” problem solving performance, led Webb to con-
clude that better probiém solvers use a wider range of strategies and techniques
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than do poorer problem solvers. (20)

Goal-Oriented Planning

Reflecting on her own research and on the research of others. Kantowski re-
ported that goal-onented planning 1s closely related to-successtul problem solv-
g w acas where t has been closely studied. namely, in geometry and in number
theory. Goal-onented plannng refers to several thought processes dentifying the
goal ot the problem, wdenufying mtermediate goals. if the ultimate goal cannot be
reached directly. setng down a plan of attack—possibly through trial-and-error.
making a table. or scarching for a pattern. (8)

Goal-oriented planning s akin to what is called **thinking through prob-
lems."" Research confirms that it is an important part of problem solving. But how
can teachers nurture goal-onented planning among their students as well as other
uportant parts of problem solving? Before proposing strategies. it is important
to take note of some of the obstacles to problem solving which many secondary
school students face.

The first obstacle to consider is cognitive development As we discuss in the
chapter **Indivadual Dafferences Among Mathemadtics Learners.”” many teenag-
ers are slow to develop cognitively wto the stage called the formal operational stage.
wheran conditonal thiking ¢ “if=then™ thinking) comes more easily 0 them and
they are not forced to “eenter™ on single thoughts or variables: that is. they can
hold two or more varables m mind at the same time. Several Soviet studies have
confirmed that such centering does exist even among older tecnagers. and Lesh
pownted to the bearing this might have on traditional classroom problem solving:
“For example. persons reading a new mathematics text for the first time will center
on some pomnts and neglect others, and they will reinterpret and perhaps distort
many weas to fit their previous conceptualizations of the subject.”” Thus. an in-
chnation to center nught be one obstacle o students’ thinking through méthe-
matical problems. (12. p. 159)

Another possible ebstacle. alluded to by Lesh, is a student’s previous math-
ematcal expenence and the conceptualization of mathematics that grows from that
experience. For many students this conceptualization leaves little room for think-
ing through problems. based as itis on memorization, regurgitation. and the con-
wviction that the svle purpose for doing any mathematical problem is to get the right
answer and. turthermore. that for cach probiem there 1s only one right way to reach
the answer. Almost 30 percent of the thirteen- and seventeen-year-olds in the re-
cent NALP assessmentagreed with the statement. *Learning mathematics is mostly
memonzing:” almost 90 percent agreed w ith the statement, ““There is always a
rule to follow in solving'mathematics problems.™ (4).

[lus narrow and distoried conceptualization of mathemates 18 widespread
among sccondary school students. tisa phenomenon we deal with at length in
the chapters *"Communicaung Mathematics™ and **Individual Differences Among
Mathernaties Learners.” Lochhead also touches on it in his discussion of the

6o
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Bloom-Broder study cited carlier. He emphastzes especidlly the conclusion that
good problem solvers, guite sumply. do more than poor problem solvers- more
planming. more checking, more reviewing, and so ou: ; .

1he inactivity of poor problent sulvers conld be attubuted to laziness but there

s an alernative explanation. Pour problem solvers are Tess active because they

do nutbelieve there 1s anything for them to do. Thesr view of both problen solving

and learping places them m the passive role of absorbing information and re

peating it back. They think you cither know the answer w a question ur you do

not. (15, p. )

Kantowsht saw signs of the same phenomenon in her rescarch. In particular,
she had designed o teaching eaperiment that stressed several problem-solving
strategies with students. One was “looking back.™ whereby students were cn-
couraged, once they thought they had reached a solution to a problem, to review
what they had done, both with an eye toward cheching and alse toward simpli
fying the solution, changing to a different solution, or posing a new question The
students used the other strategies that had been stressed., but there way seant use
of looking back. Kantowski offered a possible explanation by pointing out that
most students come W eapect one solution and one solution process for cach
problem and so see hutle sense in looking further. (9) As the NAEP results cited
above mdicate. this narrow and mechanical appreciation of mathematics is wide
spread among secondary kevel studeats. (H

It workimg with problems becomes mechanical for students, with fitde un-
derstanding ot underly ing coneepts, sume fundamertal misconceptions can arise
and persist tor « long tme. 1n therr study . Clement, et al. asked 150 caleulus-level
college students to write an equation for the following statement: “There are six
tmes s nany students s professors at this university.”” An appropriate answer,
ol course. 1s 6P = S, but thirty-seven pereent of the students missed the problem
and two-thirds of the errors took the form of @ reversal of variables 65 = P In-
terviews of the students revealed what the rescarchers called a *self-gencrated,
stabre. and perststent misconception concerning the meaning of variables and
equations.”” As a result, when the format of a problem fails w fit the mechanical
processes these students have come to depend on, their skill in -dealing with
mathematical problems begins to erumble. (0)

The alternative to having students rely on mechanical approaches is to de-
velop 1 them avanety of problem-solving processes from which they can draw,
depending on what is most appropriate for particular problems. Unfortunately, the
(quahity ot problems usally encountered in the classroom tends to make this al-
ternative less feastbie than 1t should be. Days and his colleagues compared the
problem-solving processes used by cighth-graders who are formal operational
thinkers with those used by erghth-graders who are still concrete-operational
thinhers. In particular, they compared the processes used on problems with sim-
ple and complex structures: (7)

Example 1. Senple structure. A cow and pig together cost 56 dollars. The cow
cost 30 dollars more than the pig. How much does each cost?

* ey
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1 Exampie 2: Complex structure. Jeft bought 5. oranges and 10 appics for S1.63.
An apple and an orange tdgether cost 20 cents. How much does

- © . onc apple cost? How much does one orange cost?
“The researchers discovered that on the complex structure problems the formal
operatonal students used the following processes not used by the others: deduc-
uve reasontng. use of successive approximations, estimation, checking of con-
ditions, checking of mampylatons. and checking by retracing steps. On the simple .
structure problems. however..both groups tended not to differ in their use of
processes--for exampie. they drew diagrams and tried to recall similar prob-
jems. The researchers made the following comment about-the comparison: (7. p.
KK \ '
The fact that the concrete and formal subjects for the most pari did not differ in
process use on the simple structure problems suggests that the simple structure
problems may not have evoked the use of **high level™ processes. 1f this was the
case, then many textbook problems probably fail to elicit the use of “high level™”
processes. aJso. The latter statement is based on the fact that the simple structure
problems were typical of many of the problems found in seventh-and cighth-grade
mathematics textbooks.

Like the popular iextbooks “ommercial problem-solving tests are also a long
way from emphasizing appropriate probleni-solving processes. in particular, Za-
lewski reviewed commerctal tests to gauge their valtue in studying problem solv-
ing. (22) He found them notto be very valuabie in such studies for three reasons:

2. Commereial tests overemphasize story problems.

b. Sconng focuses on correct responses only. not on the processes used by the

problent solvers. ‘

¢. The tests are tied to time limits which are 0o short.

Several problemssolving projects have produced activities, appropriate at the
unddle schooland mmor gh school levels. which are designed to encourage the
use of what Days and colleagues call “high level™™ processes. Interested teachers
at those levels can erlist the aid of the projects. (5.17) Teachers at ail levels can
penefit from the suggestions and problems in the National Council Teachers of
Mathematics (NC'TM) Probiem Sotving Yearbook. (10)

Conclusion

Some differences between successful and unsuccessful problem solvers. then.
are clear. Successful problem solvers arc more active. use more probiem-solving
processes and strategies, and have a different impression of and appreciation of
the experience of learning mathematics. “"Part 11 of Problem Solving: The Lite
Force of Mathematies Instruction™ looks more closely at the role of teachers in
making these quahties available all students.
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PART TWO




How can teachers increase their students’ ability and willingness to

L1

stick with solving problems, io ihink probiesis through, and to
appreciate that alternative methods of solution do exist for most
problems?

This s the second of two chapters vn problem sohving. The first chapter

Successful Problem Solvers . . .

shetehed aprotile ot the kinds of thinking mvolved in both good and poor prob-
fem solving The following table lists briefly the highlights of that sketch.

Unsuccessfil Problem Solvers . . .

1. do more . re-reading, recheck- 1. proceed on the basis of few clues.
ing. reviewing.

2. are able to pull key ideas from « 2. often know what is relevant. but
problem. to distnguish between even when they do. they do not
relevant and arrelevant nforma- bring the information to bear on
tion, and to bring relevant infor- solving problems.
mation to bear on a problem. ,

3. exhibit goal-oricnted planning—that 3. do not. as often or as well.

15, they idenufy a solution and a plan
of attach. o

4. we a wide variety of problem solv- 4 tend to apply one operation in the
g processes. including estima- sulution of a word problem to all the
ton, recalling stmular problems, aumbers in the provlem They per-

cetve mathematics as primarily
based on memorization.

5. percerve the mathematical struc- 5 tend to focus on queston form or
tures of problems context (e.g.. time problems or

distance problems).

6 can remember the mathematical 6. cannot, as well
structure of problems.

7. can gengrahze across problems. 7. cannot. as well.

«eeing mathematcal threads.

This chapter describes what teachers can do to affect the  ~th and quality of
their students' thinking abuut mathematical problems. In appivaching this in-
structiondl challenge—perhaps their greatest— teachers need to be aware of two

things. Fist ol all, resears is clear in concluding that students of all ages and all
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achievement levels can be mduced o assume many of the behaviors and thought
processes assoctated with effectrve problem solving. often, their problem-solv-
ing achievement scores will improve at the same time,

Second. 1 order t improve student problem solving. teachers must integrate
problem solving with three (nstructional roles. they must model some aspects of
problem solving, they must feac A directly some aspects of problem solving; and,
finally, they must facilitate some aspects of problem solving

Modeling Problem Solving

Teachers must noded problem soly ing for their students, who should see their
teachers posing problems, actively using strategies o push them through to so-
fution. and then posing new problems that spring from the ones just solved As
models. teachers need to be dlert to the values they communicate o students In
this regard, Lester has written. ™" Problem-solving instruction is most effective when
students sense two things, (1) that the teacher regards problem solving as an im-
portant actvaty and (2) that the teacher actively engages in solving problems as
a part of mathematics wnstruction.™ (17, p.43) The recent work of Lochhead and ¢
Whimbey leads to one additional salue to be comnmunicated’ (3) that the teacher
values each student as a problem solver—that is, wants t - hnow and accept the
thought processes each student applies t mathematic.t! problems, regardless of
how much refinement those processes seem to need. (18.19.20)

Thus. betore students can learn to be good problem solvers w the mathemat-
1oy classroom, they need somethmy more than direct instruction They need to
see teachers miodel ling appropriate behaviors and they need to sense in their teachers

; appropriate atutudes adout problem solving. Schoen and his colleagues con-
ducted a study o evaluate the effectiveness of problem-solving materials they had
dereloped for grades 5 through 8. They found some corroborating evidence about
teacher atitudes., namely, thata teacher’s attitude toward problem solving was re-
lated positively to the problem-solving ability of that teacher’ class 2627

“Teaching Directly

Certain aspects ot problem solving arc approprate for direct teaching For
example. Vos conducted a study i which he taught sixth-. seventh-, and eighth-
graders three techiiques to be used to organize their approach to problems' draw-
g a diagram, approximating and venfying. and constructing a chart He found

¥ that not only did the students use the technigues once they had been taught them,
J/ but there was also a relaitonship between the careful use of the three organizing
techniques and success in problem solving, (32)

Such specific techmques are called tool-skills by researchers, and they are
problem-solving prerequisttes. the groundwork upon which effective problem-
solving strategies can be built. Included with the three just mentioned should be
<he tool-shills of writing an equation, using a formula, and making numerical es-
amates. The results found by Vos and mentoned in related rescarch recommend

«
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the teachmg and reguler remtorcerent of these shills as mechanisms for students
to use to attack problems m the most organized fashion possible

Bell and his colleagues discovered several interesting things about the strat-
egy of drawing diagrams. They conducted a study of secondary level students’
dittrculties with word problems invuolving decimal numbers (2) In the first stage
ot the studs. the researchers interyiewed students between the ages of 12 and 16,
ashing them to work on a set ot problems and watching for misconceptions that
arose and what strategies . if any. the students apphed. The last stage of the study
myolved the use of walulator-enriched teaching muaterials designed w remedy the
wdenufied misconceptions.,

During the iterviews the rescarchers encouraged the use of diagrams as aids
i solving the problens. The students” skills in making appropriate diagrams were
extremely limited. In fact. ail of the students were **completely unfamihar with
the nution of ustng an abstiuct diagram to enable them to decide which particular
arithinetic operation is appropriate.”” (2. p407) Diagrams drawn by the inter-
viewers. however. were found to be useful for theee reasons: .

I. They removed the words from the problem and were then able to be used

as an ndependent. uncluttered statement of the problem.

2. They enabled the students to estimate solutions.

3. They frequently lud to 4 possible strategy for solving the problem. but this

was rarely one of the “standard™ algorithms. (For example. diagrams often
ledd puptls to choose repeated addition in preference 0 multiplication ) (2.
p. -+08)

Part ot the study last phase mvolved training in drawing appropriate dia-
grams  Though it proved to be a difficult strategy to use. diagramming served the
students well 1 clantying problems—for example. n inducing discussions con-
cerming whether ot not the operation to be performed was dependent on the num-
bers involved i a particular problem. The example below illustrates how one
student used a diagram and a caleulator to solve the problem:

& marathon 1s 26.22 nules long. Frank Shorter runs 11.9 miles per hour n a
marathon How long does 1t take lum o complete the marathon?
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Heurntics are mote direct problem-solving strategies A common definition
i the tollowing, A heurstic iy a general suggestion or strategy. mdependent ot
subject muatter. that helps problem solvers approach, understand, and’or effi-
crently -marshal their resources 10 solving problems. ' (28. p. 315)) Some of the
more commonly discussed heurtsties have already been mentioned or altuded to
i this report. goal-oniented planning. trial-and-error. searching memory for sim-
thar problems. searching for patterns. Wworking backward using a known objective
to construct & solution, ook ing back and posing a new yetrelated problem Inthe
past ten or fifteen years there have been numerous studies aumed at deternuning
the etfectiveness of teachmg the use of such heuristics. Generally. the results have
been postve. For example. Lucas conducted an intricate study of the effects of
heurstics teaching on the problem-solving shills of college calculus students His
results. probably applicable to secondary school students s well. indicate that
students who were taught heunstics regularly and in a variety of contexts, and who
were remtoreed 1 therr use of heuristics. approached problems in a more orga-
nized tashion than students who were not given «<vch training. (21) Going a bit
tarther. Schoenfeld has learned from his research that in order to benefit from
heursties tranmng. students need to be taught not only how to use heuristics. but
when (28) Thus. for example. searching for & patiern 1s appropriate for some types
ol problems and not for vthers. As they develop pattern-scarching as an approach
to problem solving m then students, teachers should also discuss with them the
proper contexts in which the strategy should be used.

As a he wristic. tnal-and-crror 1s popular, especially among novice problem
solvers. and can be a butlding block for the other heuristies Webb's rescarch has
established that teaal-and-error 1s valuable as a process supplementing the use of
cquations. but that it foses ats value as a problem-solving aid if 1t 15 allowed to
replace the use of equations. (34) For example, word problems that involve only
whole numbers. Tike the tollowing problem. can often be solved through uial and
CrTor.

Sam has 2 rolf of five-dolar bills that stit} feaves hin 10 dollars short of pay-
mg a Y0-dollar grocery bill. How many five-dollar bills does he have?

No matter how adeptstudents become at solving such problems through trial
and error. they will probably falter quickly in the facc of similar problems that
are not restricted to whole numbers, unless they are skilled in setting up and us-
ing cquations

. &
Sam 1s walking 5 mifes an hour in a 90-mife hike. How long has he been
walking when he stops to camp 22 miles {rom the finish?

Furthermwore. teachers need to be generally cautious about trial and error It
w welul. but it van overstay #ts welcome. Kantowski has stated that **without some
imstrietion (n heuristics) students generally revert to trial-and-error in solving
problems or do not attempt o solve them at all.”” (10, p. 13)

One uther aspect of mathematical problem solving should be taught directly
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Students need w0 learn that reading miathematical word problems is difterent from
reading ordinary prose. Often multiple readings are required. with attention being
pawd to vocabulary and relationships among variables. (1)

In one recent study, Cohen and Stover ashed gifted sixth-graders to dentity
what they thought were sume charaetenstics of word problems that are most dit-
ficult for average mathematies students. The researchers selected three of the most
frequently mentioned:

a. the absence of a diagram:

b the presence of extrancous information:

«. the presentation of numbers i the word probiem in an order other than

that required for the appropriate computational solution.

In the second part of the study the researchers were able to conclude, by v
ing « word problem test to a group of average sixth-graders, that these three var-
wbles did indeed affect the difficulty of word problems for average students In
the thud and tinal part ot the study, Cohen and Stover showed that students can
be tramed to adjust word problems to decrease the difficulty represented by the
three vanables. In the words of the rescarchers:

Instruction consisted simply of alerting students to the fact that they should
heeh 1o see 1t a word problem could be diagrammed. or if extrancous wfor-
mation would be exrracted. or if numbers needed to be reordered This was
then followed by drills 1 which each treatment group practiced the moditi-
cation . . That tramng lasted only three class periods: the difterences be-
tween evperimentals and controls were, nevertheless. substantial (7. pp 194-

95)

Although this study concerned sinth-graders. secondary schoul teachers can
adapt the technques to provide the same sort of experience in analyzing the read-
mg of mathematies  Another suggested technique is to have students compose.
and then solve, their own word problems.

Facilitating Problem Solving

Some aspects of problem solying should not be taught directly Rather. they
must grow 0 students trom their encounters with problems and from their class-
room mteractions with thett teachers and peers. Goal-oriented planning is an as-
pect of problem solving that needs to be nurtured 0 this way. It must develop in
probien solvers from a growing awareness tn them of the nature of mathe matical
problems and of thew own thought processes as they approach problems The re-
wearch of Lochhead and Wihimbey and of others has confirmed that a student’s
chowee ot method 1 approaching a mathematical problewm is not always con-
wrous—indeed. often 1tis quite unconscious—and sO awareness is critical to that
student’s success. (18.19,20.35)

Perhaps the greatest boost o teacher wan offer students toward developing such
awarencss 1 a classroom environment where they are regularly encouraged to
verbahize thewr problem-sol mg experiences. Putting words 10 one’s thinking often

? .
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brings that thinking t the conscous level, only then can @ problem solver eval-
wate and refine the technigues used to solve mathemaucal problems  In one re-
wearch study, students who were ashed to verbalite what strategics they had used
on a practice set ol problems were more successful on a subsequent set of related
problems than students who had not been ashed to put their strategies into words
(22)

The researchers of the lowa Problem Solvang Project destgned another tech-
mgue to herghten stwdents” aw areness of appropriate strategies 1or solving word
problems. (26, 27) In essense. the technique adapts Polya’s four stages of prob-
fem solving (23) (o o tratung program designed around calteutators and a set of
problem wards., cach of which contawns a problem and a setof questions The stu-
dents. trom grades $ through 8. work in pawrs on the cards and are expected to
attend to each of the four stages i turn. s the hope of the rescarchers that the
technque will provide " language whereby students can communicate what they
are doing and where they are having difficulty as well as a general framework for
attacking a problem ™ (27, p.7) Here 1s an example from one of the cards:

e

A one-dollar bill, a ten-doltar b, a 20-doliar bill, and a 50-dolkar bill cach
welgh about 1 gram. Of course you would rather have 10 grams of $10 bills
than 10 grams of one dollar bills Which of these two bags weuld you rather
have?

A20 grams of SIO il ) B. 13 grams of S50 balks
40 grams of $1 bills 70 grams of S1 bills
40 grams of $20 bulls 20 grams of $10 bills

I Get to know the problem. What does one 20-doliar bilt weigh?

Wit your answer be a number of
grams, a number of bills, or one of the

bags?

2. Choose what to do How will vou find the amount for
bagA?

3 Dot Find the value of the money 1 cach
bag.

4. Look back over what was done. . Did you find that both bags contained
more than $1.000?

Write a problem sinlar to this one.

In a compansen oetween & group working with this training program and a
—graun.ad swedents i« tradiional program, the rescarchers found that the program
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produced an attude toward solving word problems that was significantly more
favorable than the atttude w the traditional group. (27)

Bloont and Broder had unsuccessful problem solvers work mn small groups with
tutors. tahing urns sulving problems vut foud and reading the solutions of more
suceesstul problem solvers. The researchers reported that the students generally
became more dware of the gaps and madequacies m ther own thinking. they read
problems with more care. and they reasoned more actively and more accurately
3

Insprred by the research of Lochhead and Whimbey. Whimbey has developed
an approdch to learning problem solving in which students work together in pairs.
one student solving the problem out loud. the other student checking on the ac-
curacy of she work and msisting that the first student keep verbatizing Further
sesedrch needs to be done to determine the program’s effecti eness. which Whimbey
matntains does nor teach a method of problem solving. but rather develops cer-
tun ati tudes. meluding:

& tath wm persistent systematic analysis of problems:
a coneern for gecuracy:
the patience to employ a step-by-step procedure.
an avordance of wild guessing.
a determmnation to become actively mvolved with & problem
(1R 35

I real problem-solving situations outside the classroom, good problem <ol-
vers do not always work m isolation. Quite often. they are very good question-
askers who thrive on talking through solutions to problems  Learning to ask ap-
propriate guestions about mathematical problems is not a simple task for many
people. Recogmezing this. Lesh has recommended small group activities in the
classroom. espectally for less successful students. 1n his words. Many individ-
ual problem soling strategies are quite difficult for average or below-average ability
youngsters. But, when these internal processes are externalized in the context of
smadll group activaties, they are often easier to deseribe in @ form that is under-
«tandable o lower ability problem solvers.™ (15, p.157) Small group activitics
momtored by the teacher can free students from narros, perhaps even distorted.
ways ot looking at a problem and help them to sec the problem in a new light

Kantowsht suggests another technique to facilitate deeper thinking by stu-
dents about problems. posing problems with nssing information, followed by
questioning the students to categorize the missing wformation (12) In general.
as the NAEP reviewers were firm n recommending, a steady diet of teacher heu-

@
o Nad

P
S =

© pistic questions can do wonders to facilitate problem solving—for example, ~*Can

the problem be solved with the given information?”": **Have you scen a similar
problem betore 2" (5) Teachers can benefit from the materials of three programs
that have been developed to mtegrate the use of heuristics imto problem-solving
actwities (6..14.27)
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Sources of Mathematical Problems

In order t honor the suggestions given so far m this report, teachers must look

beyond the buundaries of textbook word problems Ses eral years ago, there seemed
o be tew sourees of such 2eul or aon 1ortine problems for teachers. but that sit-
wation has changed. Sources such as references 8. 9. 13, 23, 24 suggest prob-
fems, while references 16 and 13 provide histings of further sources of problems
Furthermore. there are nos more guidehiies to help teachers develop their own
problems, For example. rescarch has shown that students can transfer problem-
sols ing skills, such as the use of heuristics. from one problem to an other if the
two problens are at feast moderately related mathematically {29) Henve. teach-
ers should support their instruction with sequences of related problems., provided
they and their students do not get caught in the trap of w orking only in clumps of
related problems. o habit that discourages flexibility and encourages a rote ap-
proach to problem solving. Using one problem to pose guestions that resuit in a
new probleni is one Way to constrict ¢ sensible sequence of related problems In-
terested teachers mght find the work of Walter and Brown on problem posing o
be a source of spiration and an aid to.developing this skill. (33) )
+ Rantowshi provides ¢ simple example of transforming a routine textbook
problem o ¢ problen that would be non-routine for many secondary school
students. The transtormation from Problem 1 to Problem 2 can serve as @ model
tor writing more advanced non-routine problems (12);

Problem 1. Maria bought @ hamburger for $.90 and a coke for $ 30. If the lo-
cal sales tax s 5% . how much change should skie receive if she
gives the clerk $2.00?

Problem 2 Maria has exactly $2.00 and would like to spend it all on her lunch
The menu includes hamburgers at $.90. hot dogs at $.80. onion
rings at $.60, french fries at $.50. and colas at $.30. $.40. or $.50.
The sales tax is 3%  What could Maria have for lunch?

Conclusion

Among mathematics teachers, nothing evohes an appreciation of the reward
and the chalienge of teaching as much as problem solving When students who
have done httle more than memortze and imitate in their previous years of school
mathematics, begin o tunk about mathematical problems. the satisfaction for
teachers 1s enormous. While the research outlined in this chapter says clearly that
such rewards are within the reach of sccondary school teachers. italso leaves no
doubt about the scope of the accompanying challenge. Teachers who want to im-
prove their students thinking about mathematical problems must employ an ap-
proach to prublem sulving istruction that is highly structured yet open-ended It
must be structured to provude regular teaching of problem-solving tool-skills and
heuristics. the consistent modelhing by the teachers of the behaviors and attitudes
assoctated with good problem solving. and & ready access to a variety of non-rou-
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tne problems. At the sanwe tine, the teachers and therr classroom environment

must be open to students” becoming more aware ol therr own thinking and open

to then experimenting wth that thinking in the context of mathematical problem

solving .

In such a classroom environment, problem solving is valued as a process as
well s a means o amve at answers, and teachers should melude problem-solv-
mg process with problem-solving achievement in their student evaluation To help
m thes endeavor. researchers are beginning to experiment with paper-pencil in-
strurnents tor describing aud evaluating the processes used by students in solving
problems. In a report of his recent study., Schoenfeld includes several such in-
sruments and mterested teachers can perhaps draw some guidance from them (29
The area of developing ways to evaluate problem-solving processes i$ an exciting
one and. m hight of the rescarch of Brandau and Dossey. which shows that dif-
terent problems chicat the use of different thought processes and different heuris-
ties (3). the arca is also a challenging one. : ‘

N F-urther research should increase the excitement about problem sotving - For
example. researchers will build on the work of Silver (30.31). Schoeafeld (28.29)
and others W clanty how previously-solved problems affect a problem solver’s
approach to related and unrelated problems. Novel instructional techniques, such
as Whinbey > patr-problem solving. will be looked at more closely

Finally, as we move well mto the nincteen-cighties and both caleulators and
microcomputers become readily available in schools. technology will probably
play 4 greater role n problem-solving research and instruction The research studies
ol Bell et al. and Schoen et al.. cited in this chapier, speak well for the role of
caleulatons. As for ncrocomputers, some educatuts envision student-computer-
teacher chatogues m wiich the students can experiment with new problem-solv-
mg strategies., while the computer stands ready to provide hints and to remind the
students of the strategy vptions which are available. and the teacher helps the sw-
dents to mtegrate the newly-practiced strategies into their broader experience of
mathemaucs. (11

As with all of the unfimshed business af problem-solving researchers, we will
have to watt to see how realistic this vision 1s. Inthe meantinie, it s a relteshing
viston to hold onto. s are all the vistons this chapter may evoke of students thinking
more deeply about mathemateal probIch because of thewr experience with
mathematies 1 the classroont.
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ESTIMATION: A PREREQUISITE
FOR SUCCESS IN SECONDARY
SCHOOL MATHEMATICS




o

1 know estimation is important, but except for rounding, I den’t
know what to do. Is there specific instruction in estimation that
should be done?

Estmatton has held-a rather strange place m the curriculum Although it has
appeared on numerous hists of unportant skills. neither textbooks nor training -
programs have shown teachers how to teach it. what to stress. or even why esti-
maton 1o wportant. Furthermore. because it is difficult to capture all of the
thought processes of a.person who is estimating the answer to a mathen:atical
queston, there has been: relatively lidde rescarch done on the topic  Lately. how-
ever. using research methods that make thought processes more accessible. sev-
eral studies have appeared which scrutunze estimators’ thinking Their results have
unpheations for instruction. ’

The Importance of Estimation

Why should estmating with a sensc of reasonableness be considered a pre-
requistte for suceess in secondary schoo! mathematics? One answer is that esti-
mation 1 a close coustn of problem solving. and problem solving is at the core
of secondary school mathematcs. In fact. Trafton suggests that estimation and
mental anthmete (mental anthmetic is exact coraputaton done without pencil and
paper) probably help students to develop problem-solving skills because they
provide practice tn making mathematical decisions (10) ¢*How far off would |
be it | rounded those two numbers to the nearest tens’*™: “Docs this estimate take
me above or heep me below the exact answer?™) Paull’s research study revealed
a correlaton between the ability to estimate answers (0 aumerical computation
and the ability to solve problems by trial and error. (5) Trial and error is a very .
basic yetimportant problem-solving strategy because teachers can use it to help
students butld more powerful and more efficient strategies. The presence in the
classroom ot esttmation as well as trial-and-error procedures is a sign of a math-
ematcally healtly environment and there should be frequent opportunitics for
both.Many students farl to connect their classroom mathematical experiences with
mathe matical experiences outside the classroom. Reys and his colleagues inter-
viewed good esttmators and found that most of them thought of estimation as a
skull leamed and practweed outside the classroom: mathematics classes, iv their
view. always démand exact answers. (6)
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I, as many educators suspect, a relianee or paper-and-pencil solutions breeds
thoughtless. automatic, and often nuistaken computation on the part of students,
it would seem fikely that ¢ regular stress on estunation and mental anthirete could

" help stadents to break away trom such thoughtlessness While all the benefits of
teachmg estmation and mental arthimetic are pot yet known. the available evi-
dence does potat to an mfluencing of students aw ay from thoughtlessness In his
review of the relevant reseatch, Zepp poimts to the improved mathematics
achievement among 6th, 7th, and Sth graders that resufted from traimng pro-
grams in mental arthmetie. (11)

Buchanan points to four potential benefits thathe sees m ¢stimation instruc-
ton. first. 1t can produce a ser~e of reasonableness about computation: second.
it can result 1 students having ¢ greater appreciation for rumber size and the
structure ot the number system, thurd, since calculator users can never be sure when
they will ut the wrong heys. orifa particular caleulator is totally trustworthy, es-
tunating van complentent the use of caleulators, finaly. as we've hoted above, it
can factlitate the learning of problem-solving skills. (3)

Profile of Good Estimators

Just as protifes of good problem solvers are emerging from reeent research
studies, a profile of good estiators has begun to take shape from the stedy by
Reys and his colieagues. The research team selected a group of recognized good
estimators (adults. as well as students from grades 7 through 12). observed them
as they worked through several sets of estimation exercises. and then interviewed
them to determune their thinking processes., their strategies, their attitudes. and
other characteristivs that set them apart from less successful numernical esti-
mators. 16) The study helps to clarify the natare of good estimating and has im-
portant implications for preparing students for secondary school mathematics

Fiest ol all. the researchers wolated three hey estimation processes from their
observations and intervicws:

I. Translaton. By tus process the estimator chzmgcs@e mathematical struc-
ture or the equation 1to a more manageable form. Thus. an unwicldy ad-
dition problent mught be more readily estimated with a different strueture
imposed, say muktiphcation

87.419
92.765
90.043 is estmated as 90,000 x 5 = 450.000
81.974
+ 98,102

2. Reformulution. Whereas the mathematical structure is changed through
translation. reformulation changes the numerical data into a more men-
tally, manageable form, and the structure is left alone. For example, an es-
umator nught attack the five-number sum above by adding together the first
digits of the five numbers (8 + 9 +9 + 8 + 9 = 43), and concluding
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that a teasonable estinate would be a bit more than 430.000. say 440.000
or 430,000

3 Compensation: Thus 1s the process of making adjustments to compensate
tor the inaccuracies deerued through translation or retormulation The last
step in the previous example  adding 1 or 210 43 —1s an example of com-
pensation As another example. a good esumator tmight estimate the tol-
fowing sum with some compensating betore the end of the problem

73.653

86.421 “Round all of the numbgrs to 100.000 except the top one.
91943 Drop this one to make up for rounding the others This leaves
96.509 the estimited answer somewhere between 500.000 and

93,421 600.000
F06.40Y

One strategy consistently used by the estimators in this study is the so-called
tront-cad strategy.” 1n one of its variations 1t appears 1 the example of refor-
mulation above. tocus only on the first digits. operate on those digits. then do what
Compensalion seems necessary to mahe the final estimate reasonable  Many of
the people i the stady who used the front-end strategy both regularly and well
could not recall having been taugnt the strategy in school.

Another strategd which the study identfied and which teachers should note
was the use of compatible numbers., or what some students referred to as “nice™
numbers This 1s particularly appropriate in estimations involving long division,
tractions. and decinials. For cxample., faced with estimating the answer to a problem
[the 2813637, many students would change 1t to 306000 afid so estimate the an-
swer as 200. In another example. students in the study were ashed.

The Thompson’ dinner bill totaled $28 75 Mr. Thompson wants o leave &
tp ot about 3¢ Abonut how much should he feave for the up?™

Among the students in grades 7-10 who converted the problem to a fraction ap-
proximation, thuse who changed 15% to - were mchned to change $28.75 to the
compatible $28 00, and therefore estimate the answeras '~ X 328.00 = $400.
while those who changed 15% to 'o were medmed to change $28 75 to the com-
patible $20.00. and so gave the sull acceptable estimate of 16 < 330.00 = $5 00,
These students have learned that they do not aiways have to aim for one right an-
swer and that a variety of strategies will allow them to stay within an aceeptable
range of answers.

Students learn rounding as @ mechanieal shill As 1s often the case with skills
learned niechanically, mechanical rounding doesn’t alway s serve students w ellin
real estimating situations. A much richer and more tlexible form of rounding is
the use of compatible nuinbers noted by Reys and his colleagues Buchanan also
argues against mechanical rounding. preferring rounding shills to be an exten-
ston ol the voncepts “between™ and “cluser’ . as in 346 is between 300 and
200, but 1t s closer o 300, so 1 can round it to 300.7" (3)

An mmportant objective for teachers as they offer thewr students instruction and
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practice 1 estimation 1 that the students come to value estimates m thewr own right,
as distinet trom eadet answers. When students are asked to estimate a product like
28 x 49 they often muluply. find the exact answer 1372, and then round the an-
wer to 1400 Such an approach reduces estunation to a role inferior to exact
computation. and teachers should take pains that students not develop this
impression of estimation.

Reys and his colleagues were able to polate some other characteristics of good
estimators from therr study. In general, good estimators are quick and accurate with
paper-penutl computation and they use avariety of strate gies to estimate In fact,
they trequently constder several different strategies before deciding on a partic-
ular one. This caleulated flexibility s essential to estimating we'l and. indeed. to
dowg all mathematies well, and t should be part of every student’s instruction

Good estimatons” judgment and sense of reasonableness not only apply to their
estumated answers. but also to the process of estimation itselt They are able o
judge when an exact aswer s needed and when estumated answers are sufficient
or appropriate  Fnaily. thew clear sense that there are many situations in which
(1 all right ROt to strain for an exact answer leaves them less afraid to be wrong
thari their peers who are not as successtul at estimating.

As noted 1 the Researcht Withun Reach chapters on problem solving. prob-
fem solving research has made. and cortinues to mate. astrong case for releas-
g students trom the burden of thinhing that mathematics 1s a rigid system which
jeaves Iittle room for an mdnvidual’s own ideas and strategies The same is true
tor estimation. Teachers must work to convince secondary-level students that there
1s room for them as mdv dual thinkers i the mathematics ¢lassroom. that the in-
dividual stamps they put on therr estmating will be prized at the highest level of
classroom achievement, A good source of activities to help teachers in this etfort
is the book by Reys and Reys (7)

As n problem sohving. however. students require regular practice Smce es-
tmating s foreign to many students. teachers should start by offering frequent
opportunities for them o choose estiales from among several options. then dis-
cass the most appropriate choice with the students. the factors that make it the most
appropriate chotee. and so on. (10) The front-cnd and compauble-number strat-
egies noted by Reys er al. are examples of strategies that students need exposure
to and wstruction in.

Another such strategy has emerged from the stdy by Siegel and his col-
jeagues. Through ters rews and observations of individuals at all school levels.
as well as adults. they attempted todefine a flow-chart model of the process used
to approach the hinds of esttmation problems that begin in the physical world and
end with a rough numenical solution. For example. “*About how many names arc
there on thys page of the phone book?™" The researchers found that more than half
of the estmators—ol all ages—used perceptually-based strategies (It looks like
there are a lot of words. probably 300. on the page.'"), when a more reliable
“*decompostton’” strategy Was appropriate (**There are probably 100 names in a

¢
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row. and there are 3 rows on the page. so 1'd say there are about 500 names on
the page.”). The rescarchers conclu led that many individuals are not aware of
such strategies tor decomposing an estinate into @ grouping of more manageable”
subgstimates, and so could benefit from nstruction and practiee in them (9)

Caleulators and mucrocomputers otfer the pronuse of help for teachers in pro-
viding estiniation instruction and practive Ina recent British study . Bell and his
colleagues were able to use caleulators first to wentity . then to remediate. some
common mathematical difficulties of students between the ages of 12 and 16 (D
Among the most prominent of the Wentified difficulties was o lack ot understand
ing ot place value in decuual numbers., for example, the researchers’ interviews
produced comments like ™. .. 0.8 . . . that’s about an cighth™ and ** 1 07 Ibs.
is 1Ib. 7 ounces.” A companton difficulty of this 1gnorance of place value was
an inabality torestimatte with @ sense of reasonableness.

During the teaching phase of their study the researchers were able to produce
sigmficant uuptovement in the students” understanding of place value by involy -
ing then i caleulator exercses like the game catled Getung Closer, played in pairs,
in which vne student chuoses & fow aumber. the other ¢ high number, and each
puts his ur her number on o caleulator screen. The students then take turny, with

. the first repeatedly adding any non whole number to the lower starting number
while the second student subtracts similarly from the higher starting number Thus,
the numbcis on the two caleulator screens approach each other, The first player
tu pass the other player's number is the foser, The players learn quickly that «
know ledge of place value and skills in estimating are important ads antages when
the two numbers are close to each other.

,Levin has pointed out that individuals differ according to their mental images
ol numbers. and that the mucrocomputer can help then to use those images in es-
tunating—for example:. tin combining lengths of segments of the number line to
estimate suims of numbers. e discusses several computer programs that have been
develuped o sharpen estimating shaily using as an example, one in which stu-
dents estimate numbers by shooting a **harpoon”” at the number line or Cartesian
plane. (1)

Conclusion

That estimating shills ought to be taught and practiced on a regular basis is an
undentable Concluston of all the research reviewed in this chapter Several stud-
ies have shown that successful estimation instruction need not consume much time
n the assroom. For example, Schoen and hus colleagues worked with students
1 grades 4 through 6 and showed that “estimation in whole number computaton
can be taught-n a short period of time."" (8. p. 176)

[n their estinetion study, Bestgen and her colleagues worked with prospec-
tive elementary school teachers, giving one group weekly training and practice in
estimating strategies, while anuther group received just weekly practice. and a third
group recerved no training or practice in estimation as all (2) The first group-

»
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the traming and practice group- emerged front the ten-week study with a greater
understanding of and respect for estimation than the ather two Yel this was a
program that lasted a mere ten weeks, If secondary-level teachers will commit
themselves 1o regular classroom practice and remforeement of estimating skills,
the eftects on students as they advance through secondary-level mathe matics will
be astounding.
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THE CALCULATOR: AN ESSENTIAL
TEACHING AID




”

How can hand-held calculators be used to enhance the learning of
secondary level mathematics?

Because of the converence and motiv ation 1t provides and because of the lat-
wade it affords teaciers i shill and concept development. the handheld caleu-
lator has moved mto the front ranks as an aid in the teaching and leaming of
secondary school mathematies. The attitude of most mathematics itachers to-
ward classroom calculators has changed rapidly from caution to enthusiasm “In
fact, a strong case can be made from research ¢evidence that the caleulator should
be an mtegral part of the teaching and learning of secondary school mathematics
That evidence is the subject of this chapter.

I'he 1ssue of the caleulatory potential ham to students” leaming has never been
a» great among secondary school eachens as it has been among elementary school
- reachers. Even so. 1t is important to clear the air of any doubts. and to note that
research has firmly estabhished the aceeptability of hand-held calculators at all
school levels--elementary and secondary. Roberts looked at thirteen studies of the
etfects of caleulator use in the secondary school mathematics classroom (21) Eight
of those studies measured effects on concept attainment, nne measured effects
on atutude. and eleven measured effects on computational skills None of the
studies favored non-use of calculators for any of the three categories, One study
tavored caleulators for concept attainment, two for attitudes. and six for com-
putational achievement. In the other studies. no significant differences showed
up between calculator use and non-use.

Roberts remarhed i s review that the attitude studies tended to be too short
in tune to gauge any significant attitude changes. and he asserted that **the learn-
ing settings 1 which these studies were conducted did not generally emphasize
concept-formation skills."" (21, p. 84) Thus, he pointed out, educators will not
Anow the true power of calculators in the changing of attitudes about mathemat-
1cs and 1n the Icarning and teaching of mathematical concepts until there are stud-
1es that take advantage of the unique capabilitics of calculators and studies that
measure calculator effects over longer periods of time.

Robert’s observations raise two questions:

® What 1s the extent of calculator use and the commitment to calculator use

in our secondary schools?

L g

o ' ) 9 '
ERICT ‘ 9




-ERIC

Aruitoxt provided by Eic:

Calcnlators o

-

@ \What are the untgue mwstructional capabilities uffered by calculators?

I'he statistics avarlable teflect ¢ continually growng role for the caleulator in
the classroom. In 1980, Reys surveyed teachers in Missouri and found that just
over 60 pereent of senior high mathematies teachers had used calculators in the
classroom. (17). Kasten's survey of teachers in four states showed that the per-
centage of secondary teachers and principals in those states whb believe that cal-
culators should be included as « topie on ligh school competency tests ranged from
just over 40 percent to 66 percent. (13) .

Another survey underscored the need to identify and exploit the unique pe-
dagogical capabihities of calculators. Wyatt interviewed teachers who had never
used calculators i the classroom and found thai they seemed primarily aware of
o wses. computation and checking. (32) Clearly, while the majority of second”
ary teachers favor a role for caleulators in the classroom, there are still many
teachers who are unaware of the wide benefits of calculator use or of how cal-
culators nught be integrated into their aching.

Benefits of Use of Calculators

As they unfold from research and from teacher experimentation in the class-
room. these benefits seem to fall into three categories and we will discuss each
mtum:

e Calculators provide a powerful tol for evaluating the depth of students’
understanding of miathematics and for diagnosing mathematical miscon-
ceptions and difficulties.

® Caiculdtors permut teachers to adopt more freely and comfortably some of
the classroom behaviors that research has associated with the effective
teaching of mathematics.

® Calculators facihitate the teaching and learning of several concepts and skills
which have traditionally been stumbling blocks in secordary school math-
ernatics, > .

Diagnosis and Evaluation. In ways often incidental to their primary objec-
tves, several research studies have shown that the calculator can be used as a lens
by researchers and teachers to assess students’ understanding and to pinpoint areas
of weakttess. The topie of division provides a good example The recent National
Assessment of Educational Progress (NAEP) posed an exercise similar to the fol-
lowing one to groups of 13- and 17-year-olds who were allowed to use calculators
and o groups of 13- and i7-year-olds who worked the exercise by paper and pen-

cil:

0483
Among.the 13-year-olds who used caiculators on this exercise, nearly 30 percent
reversed the divisor and dividend, while just over 10 percent of the 17-ycar-olds
did the same. (5) Simularly, an extensive study of British adolescents’ under-
standing of various mathematical corncepts reported that under 10 percent of the
15-year-olds tested were “‘consistently able to press the buttons on their calcula-
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tor m the correct order m solving stmple division problems.™ (8. p 47)

No doubt. some of these errors can be ascribed to a lack of familiariry with
symbols. perhaps with the working procedures of the calculators Mainly, how-
ever, the results reflect ¢ basie lack of understanding among many teenagers of
the concept of division.

Hart urges teachers to caputalize on mneorrect calculator answers and to probe
students” conceptual understanding and mathematical sense of reasonableness (8)

For example, when a student works 5+ 100 on the calculator, ask her what she .
expects the answer to be. Quite often, 20 is the expected answer, so wher 05

shows up mstead. ash for an opjnion as to what might have happened. In other

words. use the caleulator as a catalyst for mathematical dialogues with students

The NAEP testers also ashed students to order & set of fractions according to
size: S :

S, Yo, Ve, Va1 2
[he suceess rate was very low among both 13- and [7-year olds, whether they used
calculators or not (2 percent success for both groups of 13-year-olds; just over 10
percent tor buth groups of [7-year-olds). (5) If the students generally understood -
how to convert fractions to decimals. the calculator groups should have scored
tugher on this exercise, sinee the caleulator makes such non-routine computation
much less risky. The scores were uniformly low, however, so we have strong evi-
dence that many teenagers do not know how to vonvert cerrectly fractions to dec-
imials. ‘ : .

In the area of problem solving, the NAEP rescarchers were able, with the help %
of calculators. to idenufy and call attention to a crisis that pervades the entire
mathematics cumiculum. even when computation is removed as an obstacle, most
teenagers cannot think sensioly about mathematics word problems  In particular,
the rescarchers compared the performances of calculator users and non-users on
several problems like the following:

" A man has 1310 baseballs 1o pack into boxes which hold 24 baseballs each
How many baseballs will be left over after the man has filled as many boxes
as he can? .

Because caleulators record division remainders in decimal form, calculator users
were obhged to translate the machine’s answer for 1310 + 24 = ?into a whole-
numbered remander. With or without calculators, few students solved this prob-
fem correctly, but calculator users fared especially badly: 29 percent of [3-year-
old non-users were suceessful, as opposed to only 6 percent of the 13-year-old
calculator users. Among I7-year-olds, only 19 percent of the users were able to
obtain the correct answer (5). .

Zepp considered a similar 1ssue. the role of computational skills in propor-
uonal thinking. (33) In particular, his rescarch sought to identify how much com-
putational difficulues contribute to the difficultics many students have in answering
questions like the following:

»

ERIC

i ' 3 3 *




’

Calculators

Bill made lemonade wih [2 lemons and 9 teaspoons of sugar Sandy starts
with 20Hemons, How many teaspoons of sugar should she use so that her tem
ondde tastes the same as Bill's?

Zepp worked wath groups vt 9th graders and college freshman and divided them
mto « calenlator group which used calculators on all practice activities and on a
postlest, and a non-caleulator group which used no calculators at all o the same
practice activities and posttest. Bevause there was no significant difference on
posttest: achievement between the two groups. Zepp concluded that we should not
be fuoking to computational difficultics as the major obstacle to proportional
thinking. o .

Reys and his colleagues used o “*broken™ calculator to help them gauge the
level of good estimators’ confidence in their own estimates. (18. 19) The re-
searchers secretly programmed & calelator o be wrong by varying degrees, asked
their subjects to mahe sume computational estimates and to cheek their estimates
agatnst the saleulator’s computations. During individual interviews, cach subject ¢
wits given ¢ set of estnation excreises and, as they checked witlrthe caleulator,
the error range of the caleulator was allowed to increase progressively from an-
swers about 10 percent greater than a reasonable estimated upper bound. O 25
percent, then to 50 pereent. Lven though almost 90 percent of their estimates were
wathin an acceptable range, 36 percent of the subjects went all the way through
the experument without concluding that the caleulator result$were unreasonable
Instead, they chose to wdict their own estimates. The lesson of the vxperiment is
clear and. as our culture becomes more tied to technological devices, itis all the
more pressing. we need an increase at all levels of the curiculum in activities that
develop estimating shills and in classroom dialogues that develop confidence in
the use of those skills. .

lHere 1s an example, taken from (7). of a caleulator exercise that encourages
estimating. Sinular exercises can be found in (4). ( 15) and (16):

Starting with 15, how many successive multiplications will it take to get an
answer in the interval (10,000, 10,500)?

One way of getting there in 4 steps is: o

1. 13 x 600 = 9.000 '
, 2. 9,000 x 1.1 = 9,900
\ 3.9900 x | ! = 10,890

410890 X .95 = 10.345.5

While the Reys siddy used the caleulator to show that even good estimators
lach confidence 1 then own estimates skills, Blume used the calculator to view
the solution process of students when they tackle problems with and without the

] ard of the machmes (2). For example, there are at least two ways to set up the
solution of the following problem:
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: The star basketball plaver scored a wotal of 297 points during the first nine
»’ games. Jill averaged 14 pomts fewer per game than the star How many points
' did Jill score during the firstnine games? .
A 79 - 1 x9=
LB 297 i x 9=
Method A first deterunnes the per-game average of the star, subtracts Jilk™s av-
erage. then multiplhies by Y to obtain It total. Method B shorteuts this process
by multiplyrng the ditference between the star’s and Jill’s per-game averages and
subtracting that total difference from the star’s total to, give Jill's total.
father method 1s v ald and sound. but Biume found that a group ol seventh-
. erade students tended to 1gnore the shorteut solutions more and favored the longer
solutions more when they used calguiators than when they used only paper and
pencil. The wpheaton for teachers is clear. allow students to use calculators to
colve mathematcal problems, but help them through discussion, to become aware
of thetr own solution processes as well as the variety of solution processes avail-
able o them.

Blume and Mtchell worked with 7th grader- and trained them in the use of
calcukittors with Reverse Polish-Notation (RPN) fogic. a bracket-free machine logic
used by many screntists and enginecrs. (3). Onee the students had learned top-
erate the RPN caleulators, they were tested on several computations, The major-
ity showed they had mastered the new machine logic. In fact, 81 percent were
correet o the fotlowing example. (25.97 + 57.78) = B4 =N W
rentheses were nussing. however? and it was up to them to decide on the hier-
archy of operations, the students did not fare as well. Only 20 percent gave the
correet answer 70.5 to the following exercise: 83.3 — 544 - 4.25 = N. Most
subtracted first, then dwaded, rather than the reverse. thus revealing how con-
;used most students arcrabout the notion of operational hierarchics—that is, which
operation mist be performed before others in a computation.

Especially as they head wto algebra. students musi be comfortable with op-
erational erarchies. Lappan (15) suggests using the caleulator as a tool for help-
mg students to acquire skl in manipulating parentheses in equations, through
problems like: )

N

¢ . 1. Insert parentheses (o mukc: these true:
16 x 15 -7 =233 16 x 15 + 7 = 247
16 x 15 -7 =128 16 x 15 + 7 = 352

. 2 Insert . -, x. +. and parentheses, if needed. to make these tie:
. 29 13 =57 R
) 29 13 = 5655 .
pes .29 13 = 448 ) -
29 13=1
29 13 = 0.1487179

-
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It you use such cxamples to help the students’ transiton to algebra go more
smoothly, make sure you have them discuss the roles of the parentheses in the
exercies that allow different answers to arise each time.

In « recent Britsh study . Bell and his colleagues were able to ise caleulators
hiest to wdentify , and then to remediate, some common mathemaiical difficulties
ot students between the ages of 12 a0 < 16. (1) Among the most prominent of the
wlentified difficulies was ¢ lack of understanding of place valu  in decimal num-
bers, for example, the rescarchers’ interviews produced commets like ™ 08

.. that's about an cighth™ and **1.07 Ibs. is | Ib. 7 sunces.™

Dunng the teaching phase of their study the rescarchers were able to produce
sizpiticant iprovement i the students” understanding of place value by involv-
ing them i caleulator exervises ke the game called Getting Closer, played in pairs,
in which one student chooses 2 low number, the other & high number, and cach
puts his urher number on a caleulator screen. The students then take turns. with
the first repeatedly adding any #on-whole.number to the lower starting number
while the second student subtracts similarly from the higher statting number Thus,

the numbers vn the tho caleulator screens approach each other. The first player

to pass the vther player’s number is the loser. The, players learn quickly that a
hnuwledge of place value is an important advantage when the two numbers arc
close to each other.

Effectne Teadung Beluntors. Recent research has made it more possible tham
ever to describe effective mathematics teaching, by identifying those classroom
behasors that Lontribute to effectiveness. That description is dealt with in depth
i the chapter, *Effecive Mathematics Teaching.”* There is a specific connee-
tion batween effectiveness rescarch and calculator research. however, Calcula-
trs wan facihtate the icarming and use of effective teaching behaviors, and it i
that corneetion-'we describe in this section.

Research shows. that effective teachers spend more time than less effective
teachers cn whole-lass lecture, discussion, and demonstration. When Reys and
hus colleag ues interviewed teachers who had begun to use calculators in the class-
roont. she teachers reported that they were able o cover more topics with the aid
of caleulators and that they dealt more with concept development and less with
computation durmg therr mathematics classes. (17) As they become more adept
with calculators in the lassroon, teachers can apparently use them to create en-
vironments which invite more lecture, discussion, and demonstration. Another
trademark of effective teaching which is related to allocation of time is the amount
of time teachers heep their students engaged in learning tasks. In this vein, Sze-
tela noted at the end of a study involving the use of calculators to teach ratio to
seventh-graders that, in the study’s posttest, **students using calculators ap-
peared more mouvated, were more industrious, and spent less time idling ' (28,
p. 70) It 15 likely that classroum teachers could create the same effects when they
use handheld calculators.

Another characteristic of effective teaching that has emerged from research is
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question-asking--the number and quality of questions asked by the teacher and the

_number of opportunities made available to students for their own questions ‘The

calculator 15 a natral nducer of curiosity and of inclinations to experiment and
to ask questions. Shirey's study illustrated this inducement to experiment among
caleulator users 1 grades 10 through 12.(22) Itwas a brief study. comparing onc
group learming a umit on home mongages via computer-augmented instruction with
a group lcarning the umt with the aid of handheld calculators. Shirey noted that
“more calculator students performed some experimentation beyond the mini-
mum wheri compared to the computer group.’” Piaget has urged the development
of environments around young children that are filled with objects to pique their
cunosity. In the secondary classroom, calcvlators can apparently serve a similar
function for older students.

By allowing students to manipulate numbers and to obscrye number pauerns
without the tedum that cften accompanics paper-pencil computation, calculators
make 1t possible for students to turn their questions into conjectures and their
conjectures 1nto mathematical argument and proof. If suclt a process becomes &
regular part of classroom activity. it leads students to construct a view of number
and mathematics in the same way that, according to Piaget, they develop their
world-view: by interacting and experimenting with the objects around them. The
primary role of the tcachet in this process is to help them to formulate their ques-
tions and conjectures and, of course. to make sure they have frequent opportun-
ities to use the calculators in this way.

. Krist tilustrates the use of calculators to engage students in a dialogue lcading
to conjecture with the following example. (14) First. the teacher notes that 6° —
6 = 5 + 5 and asks the students to look for a patiern that might extend this
cquation into a conjecture, Do other pumbers fit into the same sort of equation?
How could you check it for other numbers? What short-cut expression might statc
the conjecture that the patiern exists for all whole numbers? (e.g..N* = N = (N
~ 1) + (N = I))»1f the class is versed at all in algebra, the next question might
be: How could you show that this s true for all whole numbers N?

The abilty to communicate the continuity of mathematics from topic to topic
is another characteristic of effective mathematics teachers. (See the chapter “Ef-
fective Mathematics Teaching.™) Hiatt points out that one aspect of that conti-
nuity—the mathematical method of inquiry—is communicated clearly and
consistently when calculators are used well (9). As Hiaut describes it, the method
of inquiry has five steps, cach of which can be seén in the Krist example above:

1. making observations:

2. orgawm7ing obscrvations into paterns. conjectures:

3. specializing and generalizing through inductive or analogous reasoning;
4. inventing symbolism for the generalized conjecture:

5. proving the conjectures.

Concept and Skill Development. In his overview of calculator rescarch and
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development in mathematies education, Weaver pomts out that the true power of
the caleulator s that it can transform (and 1 some classroonts /ias transformed)
ahe process of learning mathemancs. (30) Traditionally, how teachers develop
inathernatical ieas, apphications, and problem-solving skills in their students has
been 1nterw oven—often tangled— wath their development of student proficiency
i paper-pencil computational algonthms. Weaver writes that, although the two
developrient processes should work in p.lmllcl and not in conflict, parallel de-
“velopment has never been the rule in scwndary mathematics classrooms. Now
the calculator offers an opportumty to make the two processes truly parallel and
to heep them that way. The message to teachers. teach paper-pencil computa-
tronal algorithms, but also tahe advantage of the handheld calculator as a incans
for dev eloping mathematical ideas. applications, and problem-solving skills

If the prcture Weaver paints 1s accurate, then we might expect 8 sce some clear
eyvidence of the effects of mstrucuonal caleulator use on concept and shill devel-
opent. Unfortunately ., calculator research is young and so has produced a rel-
atively modest, though extremely promising, set of results. Once researchers have
more time for exploration, howeser, it is possible that the power of the calculator
will be felt throughout the mathematies curriculum, In fact Jewell analyzed a set
of typrcal secondary school textbooks and concluded that approximately one-half
of the content of algebra, geometry, and clementary functions texts and one-cighth
of an algebra-trigonometry text vould be appropriate for calculator applications
that contribute to mathematical understanding. (11)

in their search for specific topics that are especially ripe Yor calculator use,
rescarchers have looked for concepts whose Iearning is often impeded by the
computational difficulues mvolved. Ratio is one of those concepts. Szetela de-
signed a sev enth-grade study with the hypothesis that the measurement situations
that quite often. form the basis of ratio instruction can be swept clean of distract-
ing calculations if calculators are used. (28)

The study involved eleven days of ratio instruction for calculator and non-
calealator groups. Included 1n the instruction were measurement of cireles to de-
termine the ratio of diameter to circumference, measurement of poles and their
shadows, measurement of automobile width and length, coin tosses, and so on
In the tesing admimstered after the instruction was completed. the calculator group
dJud better, though not significantly better, on two achievement tests and one at-
titude test. The calculator group did significantly better than the non-calculator
group on a test on unfamiliar ratio problems, during which the calculator group
was allowed to use caiculators. BN

. Movmg, to a later pointin the x.umculum Szetela also studied ninth and tenth
graders using calculators to icarn trigonometric ratios. (27) At the heart of this study
was some inten 1ve mnstruction over a three-week period that centered on the de-
velopment of abbres tated trigonometry tables through measurement activities with
nght triangles. One group of students worked through the table development with
the ad of calculators, another group worked without calculators. There was no
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sigmficant difference between the two groups on an achievement test adminis-
tered after the mstruction was over. Of special interest to teachers, however, may
be the testimony of the teachers nvolved in the study that ““teaching with cal-
culators was much less onerous than teaching without caléulators.™ (27, p. 118)

Wheaticy conducted a problem solving study with calculators at the sixth-grade
level which ciearly nvites similar investigations by secondary school educators.
(31) In the study, two groups of students reccived the same training in the use of
problem-solving stratcgies such as estumating, retracing steps, and checking the
reasonablencess of answers. One group used calculators in the training and the other
did not. In afinal problem-solving test, the calculator group used significantly more
of these strategies than did the members of the noncalculator group.

.One arca of the curriculum where calculator rescarchers have been fairly ac-
tive is ninth-grade general mathematics. Toole conducted-one of the longer stud-
ies in this area, a 6-month study in which she compared a calculator-assisted
program used one day a week with non-use of calculators in the same course. (29)
in the sixzmonths between pretests and posuests, the calculator group gained eight
months more on the total test than the non-calculator group. The breakdown into
subtest gaing was as follows: 7-month gain in computation, 5-month gain in con-
cepts. I-year gain in applications.

Creswell and Vaughn also conducted a calculator study among ninth-grade
general mathematics students. based on cight weeks of instruction in decimals and
percents. (6) Two groups of students were compared: calculator users and non-
users. The non-users were taught from the standard textbook; the users received
instruction based on materials designed by the rescarchers for the reinforcement
of the concepts invoived in decimals and percents. On the postiest that measured
Y the Ievel of achievement over the cight weeks, the calculator group scored sig-

nificantly higher than the non-users.

Remarking on this difference, and noting the frequency of studies where no
significant difference arose when the calculator was used merely to supplement
the textbook for checking and calculation, Creswell and Vaughn ascribe the
achicvement difference between users and non-users in their study to the mate-
rials they developed to exploit the calculator. Both Roberts and Suydam have also
taken note of the dearth of rescarch studics and of curriculum materials that ex-
ploit the unique capabilitics of the caiculator (21, 26). Instead; we sce curriculum
materials that suggest only supplementary usc. One major ckeeption to this is a
carcfully developed cleventh- and twelfth-grade mathematics curriculum built
around the progrumniablc calculator by Rising and his colleagues. (20) Another
exception is the ninth-grade course, based on concepts from statistics and on the
use of the programmable calculator, which was developed by Hoffman and her
collcagues (10). Without the proliferation of such materials, we may never sec
the real pedagogical potential of the calculator {ulfilied.

We also may not get a truc reading of the usefuiness of calculators if they are
not welcomed into test-taking. A majority of sccondary teacliers arc apparently
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eady 10 tahe tus step. In their survey, Reds and s colleagues found that 67 per-
cent of semor high school students and 52 percent of jumor high school teachers
would support the use of caleulators on standardized tey' > measuring concepts or
apphications. (17)

Conclusion

The calculator hay been cast into a peculiar situation. On the one hand, 1t has
become a fixture among American teenagers  the NAEP data shows that 80 per-
cent of thirteen-year-olds and 85 percent of seventeen-year-olds cither own their
own calculators or have one availabie for use. (5) On the other hand, financial
exigencies may heep the machine relatively invisible in the secondary school
classroom. In particular, tf calculators have to compete with microcomputers for
funding. the curriculum materials needed to mtegrate the caleulator into the cur-
riculum (as opposed to tts usual supplementary role) may never be developed.
Furthermore, calculator traming for teachers may be put aside for lack of fund-
ing. and the need there ts critical. Reys ¢f al. found that a large percentage of the
teachers tney surveyed said they wanted training in the use of caleulators, but had
never had any - 71 percentof jumtor high school teachers and 63 percent of senior
high school teachers wanted trning, while only 13 percent and 17 percent, re-

s speetively, had already had some training. (17)

That the calculator should be an integral part of the curriculum has been es-
tablished, but there are still many picces missing from the caleulator picture. How
and at what specific points should it be integrated intu the curriculum? Over the
long term, how well can 1t facilitate students” usc of pioblem-solving processes
and strategies ! How can teacher traning be designed so that caleulator use will
mahe 1t caser for teachers to behave effectively in the classroom? These are
Yuestions that touch on the most important issues, in mathematics instruction. They
must not be ignored. :
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UNDERSTANDING FRACTIONS:

A PREREQUISITE FOR SUCCESS IN
SECONDARY SCHOOL
MATHEMATICS

———




[ teach mathematics in both the eighth and ninth grades, and I see
a mysterious change in students’ performance from the one grade
to the next. Many students who seem to compute fairly well with
fractions in the eighth grade appear o run into trouble when they
face fractions in the context of algebraic equations in the ninth

" grade. Is there something in the change of context that throws the
students off?

Secondary sehool mathematics must scem like a foreign language to students
who are not fully prepared for it. Like the students described in the question above, .
they often founder even in arcas where some of their skills scem secure To many
teachers this foundering is a signal.for educators to re-cxamine the teaching of
prerequisites for high school mathematics.
. Among the prerequisites singled out for scruty by the teachers whose ques-
tions form the basis of Research Within Reach: Secondary School Mathematics,
understanding fractipns was one of the two most frequently mentioned. The other,
estunating with a sense of reasonableness, is covered in a separate chapter

A Difficult Concept s

In describmg the several important threshholds in the learning of mathemat-
1cs.-Steffe has underscored how very real and very critical is the dilemma faced
\by both the teacher who asked the question at the beginning of this report and by
the students alluded to in the question: **There are (it least) three critical
ac‘w,‘cvcmcnts in a child’s mathematical life-—the idea of ten as a unit, the idea of
a fraction, and the idea of an unknown."" (18, p. 20) Faced as they are with the
double dilemma of stepping into the arcna ofalgebraic unknowns—the third crit- -
ical achievement—avithout the aid of the second critical achicvement—2an un- -
derstanding of fractions—it is no wonder that many students’ seeming mastery of
fractions begins to fallsapart.

How can it happen that $o many cighth graders can-scem to master fractions,
only to stumble over them in the ninth grade? On ore level, the answer is simple:
there 1s much more to nastering fractions than mastering computation, On a deeper
level, there are several subtle aspects of fractions which slip by many students as
they prepare for secondary level mathematics. Some research in the past decade”
has helped to delincate those subtle aspects.

Payne’s review of fraction rescarch provides an overview of the process of
icarming fractions that reflects how long and winding the process is, and the va-
riety of contexts in which fi ractions are encountered in the clementary school cur-
nculum. (15) The carly days of learning fractions arc not so difficult, Payne cites

-
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evidence that most students from the age of eight on can master the initial frac-
tion concepts and symbols 4 two-week period, and that they tend to be quite
enthustastic about fractions during this initial learning period. Yet, fater on, as they
confront such coneepts as eqaivalent fractions, even proven instructional strate-
gies ke paper-folding and using different-sized rods cannot offset the trouble most
chnldren have with those concepls. Some pictorial representations of fractions -
i particular, on the number hne—seem 2speciaily diff icult for students in the in-
termediate grades. (15)

The recent National Assessment of Educational Progress (NAEP) illustrates
some of the weaknesses n understanding that underlic many secondary sudents’
eaperiences with fractions. In several exercises NAEP tested students’ skills in
estimating computations with fractions. The results indicated not only a general
weahness 10 students® understanding of fractions, but also revealed that many
students resort to memory—and often mis-remembered re'=s —to compute frac-
tions mstead of estimating. Thus, when asked to estimate the answer to 1247 +
7 (the test did not allow enough time to figure this out with pencil and paper),

- fewer than 23 percent of the 13-year-olds and fewer than 40 percent of the 17-
year-olds chose the correct estimate of 2. Many of those who were mistaken at-
tempted to compute the answer without a cheek for reasonableness in their an-
swers—in fact, 19 and 21 were common angwers. (1)

In thew summary of the stats of secondary students” understanding of frac-
tons and their shafls i computing with fractions, the researchers who summa-
rized the NAEP results made the foilowing statement: “Overall, it appears that
roughly two-thirds of the 13-year-olds and about three-fourths of the 17-year-olds
have lcamed most of the very elementary fraction skills. However, only about half
of this number can integrate these skills to solve some of the more involved cal-
culations with unlthe denominators and mixed numerals. In other words, only about
40 percent of the 17-year-olds appear to have mastered basic {raction computa-
tion."* (1, p. 331) ' )

One criizal aspect of fractions that students often do not grasp is their flexi-
bie nature—thiey are quantities with real number value (%2 is greater than %); they
also express relationships between quantitics (% of 12 is 9). Kieren (8) has ana-
Iyzed the various contexts in which we usc rational numbers, the language and
symbols that accompany cach usage. and he has summarized the four contexts in
tns table (Note. a rational mumber is a number that can be expressed as the quo;,
tent of two ntegers, All rational numbers can be expressed as fractions, but not

all fractions are rational numbers - for example. w/A4):
G

\ Context Language Symbol
measure three-fourths of a-unit T ¥
quotient three divided by four . 3 +4
ratio three to four 3:4
operator three for every four 3for4d
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As examples of the four aspects. cousider the following:

) measure: *The arca of this region is 1 square meter plus ¥ square meter plus
: Ve square meter, or 1% = 124 square meters.””

AN s - 1
quonent: *'Sharing 3 ¢andly bars among 5 people me s cach person gets ¥
of a candy bar.™

ratioz  ,,'"A one-to-three mixture of flour and water has the same consist-
ency as a two-to-six mixture, because Vi = %." g

operatorr I a store shows a profit 2 out of every 3 days, then over a 30-
day period, there will be 20 days of profit, because ¥ of 30 i 20.”

The researchers who summarized the recent NAEP results offered théir as-
A'scssméqt that most 13-year-olds see these four aspects of fractions as scparatc,
wnrelated topies, rather than as different contexts, for the same concept. (1) The
validity of that assessment is strengthened by the rescarch of Noeiting. (14.8) He
found that different contexts of fractions draw qualitatively different responses
from students. In particular, he asked students a serics of questions using either
the ratio context or the quotient context, Here are sample uestons from the study?

Situation 1 (ratio number questions)
Which of the following mixtures has a stronger orange flavor, A or B?
A: One orange concentrate, three water
B: Two orange concentrate, six Watgr
Which of the following mixtures has & stronger orange flavor, M or N?
M: Two orange, three water
N: Four orange, six watcr . :
Situation 2 (quotient number questions)
Some cookies are shared among two groups of boys. Inwhich group will
a boy get more cookies, A or B?
A One cookie for three boys
B: Two cookies for six boys
In which group will & boy get more cookies, M or N?
M: Two cookies for three boys
‘ N: Four cookies for six boys
Nocelting found that students generally were able to answer the second ratio ,
(uestion if they were able to answer the first, but found the first of the quotient
questions casier than the second. cven th ugh Situation | and Situation 2 are
mathematically the same. Obviously, students think differently in the quotient
context than in the ratio context. . .
_ Larson noted another facet of students” misunderstanding of fractions—the
ability, to distinguish between a fraction as an expression of part of a unit and a

-
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fraction as a number with & umque place on the number hine. (11) She asked the
seventh grade students i her study to locate the point on this line segment that
can be named by the fraction 1/5. ’

0o .- . . ]

-

In general, nuny of the students tended to use the rule. count the number of
equivalent segments (in this case, 5) tu the derominator and count the number
of equivalent segments from zero until you redch the number which will combine
as the numerator with the chosen denominator to yield the fraction ' (in this case.

1). This rule served them well in the above problem, but

approximately 20 percent of the students also used the algorithm to answer the
same question about the following line segment, and they chose the indicated point.

o . x_ . ... ... 2

Thus. they chose the point representing %o or ¥ of the whole line segent from
0 t0 2, not the number ¥s.

In a sinilar vein, Ehenstam conducted a study among Swedish students and
noted that more than half of the 15-year-olds tested were erratic in their selection
of fractions less than | from a list of fractions of various sizes. (2)

Lankford set up a scries of interviews of 7th graders, designed to determine
the kinds of nn¢ conceptions young people have about fractions. (10) In one ex-
amiple. he carefully documented 22 different erors the students made in figuring
out ¥s = Y2 = ? Overall, the most common errors he noted in his study were:

I. Multiplying a mixed fraction times a whole number by multip'ying the whole
numbers and tagging the fraction on the end:
I x35=15% .

2. Adding fractigns by adding numerators and adding denominators.
A+ U # %.

Again, it is important to try to look at the roots of such errors. As Vinner and
his colleagues point out, in order to know that %2 + % = %. a student must know
that % = Y. that ¥a < Y2, and must understand what the addition of fractions
means. (20) These are conceptual issues and cannot be scttled through algo-
rithmic training alone.

Kieren and Nelson conducted a study, bascd mostly on interviews of students
mn grades 4 through 10, the purpose of which was to delineate the development

in young people of the notion of a fraction as an operator (for example. ¥s of 20.

is 12). (9) The students were asked to observe a “*machine™ into which a certain
number of papers went in and a lesser number came out, and then to describe what
rule ran the machine. Thus, they might sce an input of 20, an output of 15, and

8
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wput ot 40, and output of 30. and so o, and conclude that the rule is % % . From
thetr anterviews the researchers hy pothesized the following three levels of growth*

a. The studeats are Y2-oriented. They can identify operations that are ¥ %,
but are relatively fixed on V2, to the extent that they are inclined to identify
other fractional operations. such as VA X as V2 <.

b. A transitional level, where the students can ident fy unit fractional opera-
tors—that is 2 X. V4 X, ¥ X . ¥ X . and so on. and the composition of
unit operators. for example. %2 X Y5, Y4 X V5.

¢. ‘The students can identify all forms of fpetional operators.
Role of Instruction

A very high percentage of the studies cited so far were based on student in-
terviews, which should be a clear signal to teachers wanting to shore up their stu-
dents’ understanding of fractions. Inorder to learn which aspects of fractions are
nusunderstood by their students. teachers must encourage them to verbalize as
much as possible and should take advantage of the ensuing classroom dialogues
to develop a full understandiag of fractions.

. Lochhead (13) gives an example of such an instructional appreach in the con-
text of addition of fractions. Give no preliminary explanation of what adding
fractions 1§ all about. Give a simple question suchas **V2 + Yo = 2" which will
probably bring a correct answer. Ask the students to verbalize the rule by which
the addition was carried out and which can be applicd to further addition exer-
cises in fractions. Now give another example that will test the student-offered rule
and {hich might provide a counter-example to that rule if it *vas flawed. Finally.
continue the discussion, having the students revise their rule if necessary.

Hasemann's study made it clear that instructional strategies can have a tre-
mendous bearing on how well students undérstand fractions. (6.7) He worked with
German adolescents who were relatively unsuccessful in mathematics. He pre-
sented fraction exercises in two forms: in diagram form and in computational form
Thus. a circle was shown with three-quarters of it covered with dots. ‘The stu-
dents were asked to shade in 1/6 of the dotted part and then to say the fraction of
the ¢ircle that had been shaded,

The same exercise appeared also in straight computational form:
116 % 34 =2
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Shghtly more than 50 pereent of the students in the study were successful in
the computational exeruse. while only 30 percent succeeded in the diagram ver-
sion,

Hasemann contrasted his results with the results of a similar experiment with
British student. i a program whose emphasis was on understanding fractional
concepts through diagrams. The results were reversed. slightly more than 50 per-
cent of the British students succeeded in the diagram exercises, while fewer than
25 percent were successful i the computational version. Pointing out that Ger-
man schools emphasize the computational approach to fmc',ibns{ in czmtmst to the
dtagram-oriented British program, Hasemann concluded that instructional em-
phasts and stress will affect many students® understanding of fractions.

Another possible factor with a bearing on instruction emerges from cognitive
processing research, that is, the research that studies how learners process infor-
mation, parcelling 1t out nto the shelves of memory and gaining access to it when
it1s needed. As a result of hns research, Greeno has offered the opinion that when
lcarners compare two fractions by regions or diagrams they use spatial process-
ing, but that they process the algorithm for comparing fractions--choosing a com-
mon denominator, then multiplying and dividing by the appropriatc numbers--in
adifferent way. (3, 15) In essence. says Greeno, the two ways of processing pro-
duce two different concepts of fractions.

Both Hasemann's work and Greene's work nnply that students need to see both
approaches to fractions--visual and algorithmic--and that they need help in sceing
how the two relate to each other. Instruction that puts a heavy stress on compu-
tational algonthms for fractions can lead students astray. Peck and Jencks inter-
viewed sixth-graders as they worked on various fraction exercises. such as **Which
is larger, 174 or 2/57"" **What is 2/3 -+ 1/4?"" and **Can you draw a sketch of
132" (16.17) The researchers noted ** Almost all the children appe-red to scarch
their memones for rules and then to try to apply the rules. The rules were often
nusapplicd, and the students could not telt that they had done so.™* (16, p.347)

In describing the results of the extensive British study entitled Concepts in
Secondary Mathematies and Science (CSMS), an assessment of the mathematical
and scientific understanding of students between the ages of 12 and 16, Hart
sumtned up the researchers' conclusions for the topic of ratio: “Finally. teaching
an algorithm such as a/b = c/d is of little value unless the child understands the
nced for it and is capable of using it.” (5, p.101)

The CSMS rescarchers found that, rather than using an algorithm that has no
meaning for them, students often approach a ratio problem by “building up™. For
example. in approaching the problem *1/2-cup of cream is sufficicnt for 8 peo-
ple. How much 1s sufficicnt for 12 people?’, they reason that 12 is 4 more than
8. 4 is half of 8, so the answer is 172 + 1/2(1/2) = 3/4 of acup. The reasoning
1s valid, but the researchers pointed out: **The majority of children do not pro-
gress beyond doubhing, halving and using doubles and halves to *build up” to an-
swers. This ability 1s no guide to how the child would tackle a ratio of say 5:3."
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(5.p. 10D)
The mstructional imphcatons of the research described so far are threefold:

I. Be alert to the muluple levels of meaning in the concept of fraction and to
the different degrees of understanding associated with each.
2. Be aware of the limitations, some emerging from cognitive development,
others from variations in spatial processing, that cause differences in stu-
« dents’ understanding of fractions. :
3. Do not rely totally on algorithms to teach fractions. Integrate the use of
diagrams with the use of algorithins. .

One pronusing mstructional approach which is faithful to all three has been
part of the Calgary Junior High School Mathematics Project. (4) The approach to
teaching fractions was a ** process’* approach. through which seventh-grade stu-
dents carried out a mathematical investigation. They experimented with concrete
materials. recording what happened in the experiments, formulating questions.
and wnung up accounts of experimental results as well as applying the results to
practical situations. The study lasted cleven and a half wecks. Not only did the
expenmental group’s achicvement improve significantly when they were coni-
pared with a group of students learning from a regular textbooK, but they also
displayed sigmficantly greater enjoyment of fractions than did the students in the
regular group. Furthermore, there was a significant improvement in their ability
to give explanations, probably due to their experience in writing up accounts of
experimental results.

Calculators are a valuable tool for teaching fractions. Szetela reports that sev-
enth-graders who were taught the concept of ratio with the aid of calculators did
better on an unfamiliar ratios test than a group who learned ratios without cal-
culators. (19) Szetela also reported that the learning experience was “less tiring
and frustrating for both tcachers and students when calculators were used.™ (19,
p. 70) As in all such uses of calculators. however, the machines cannot ‘stand on
their own. Teachers must be ready to deal with issucs and questions which cal-
culator use can generate. For example, many students do not understand why
1/9 beecomes .1 111 . . . on the caiculator screen. Alert tcachers will note the con-
fusion and help students to see the meaning that binds the two representations.

Microcomputers also offer some exciting prospects for improving students’
understanding of fractions. Although educators have known for decades that in-
dividuals vary widely in their mental pictures of number--in particular. of frac-
tional numbers--there has been a dearth of instructional strategics that can support
a wide varicty of approaches to picturing and manipulating numbers. With its ca-
pacity for displaying diffcrent visual models of number concepts, such asin the
program described by Levin which invites students to estimate numbers by shooting
a **harpoon’” at the number line or al the Cartesian plane, the computer promises
10 increase the supply of such strategies. (12)

El{llC 1iv 13

Aruitoxt provided by Eic: »

L




: Fractions

K

Conclusion

The technological advances of the past decade that have resulted in the hand-
held calculatyr and the nucrocompurer have run parallel with the advances made
by the set of fraction research projects described in this chapter. The analyses and
strategies that have resulted, combined with the technological aids that have been
developed. improve the chances of teachers for establishing an understanding of
fractions as a real prerequisite to secondary school 1nathematics, one that can be
fulfilled by most secondary school students.
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I hayv a two-part question concerning algebra. First, students in
Algebra'l seem to be at several different levels of understanding of
variables and equations. What characterizes those different leyels?
Second, even when they are taking Algebra 11, many students seern
to have mastered only mechanical skills and they cannot adapt
them to new situations. For example, they may recognize that
factering can be applied to a* + 2ab + b, but not see that it can
also be applied to a* + 2a*b*+ b*. What contributes to this
inability to adapt algebraic techniques?

As many teachers know from experience, success in Algebra | does not guar
antee sueeess 10 Algebra 1. The techniques, learned in the first course often stall -
at the mechanmeal level and give hittle help in the second course’s applications

Furthermore. 1t appears from recent rescarch that success in Algebra 11 does
not guarantee an understanding of cquations and variables deep enough to permit
students entering college mathematics to translate freely between word state-
ments and algebraic expressions. The algebraic shills and understanding of many
of these students stall at a more advanced. yet still intermediate. level (4,5, 6,
18)

The dif ficulties involved in developing a deep understanding of algebra resalt
in pari from algebra’s having several aifferent faces. On the one hand. it is a kind
of generalized arithmetic, with central roles for addition. subtraction, multipli-
cation, and division. On the other hand, it is a structured system for formulating
and mantpulatg vartables and formal mathematical statements Because of mis-
conceptions or slow cogniine development, young people may succeed in some
applications but fail to connect algebra t. its broader mathematical-applications
The teacher's question that begins this report provides one such example. the re-
sults of the recent National Assessment of Educational Progress (NAEP) provide
another.(3) Around 40 percent of 17-year-olds with one year of algebra were able
to solve linear equatons in one unknown. The comparable figure for 17-year-olds
with two years of algebra was 60 percent. [n both groups, however, the success
rate for applying algebraic knowledge to word problems was consistently much
lower than 40 percent. The rescarchers who interpreted the NAEP results noted:
“*It appears that although additional study in algebra may improve students’ al-
gebrawe shalls, it does little to help thém iearn to apply those skills to solve prob-
lems.”” (3, p. 60)

Recent research has provided a clearer picture of student misconceptions about
algebra and of the nawre of the various levels of algebraic understanding. This
has been achicved through careful testing, followed by comprehensive student
interviews and struction that fits' the student needs identified in the interviews
Rather than just focusing on what an algebra student learns, researchers cai now

ERIC 114

L




ERIC

Aruitoxt provided by Eic:

Teaching and Learning Algebra . .

Focus on row algebra is learned. as well.

This report describes the major re.carch findings and the recommendations
drawn from them. In the first section we focus on the student and discuss the ma-
Jor nusconceptions and errors that have been uncovered. In the second section we
concentrate on the concepts 1n algebra and discuss the several Ievels of meaning

ot these coneeptss as well as factors that may limit a student to,one meaning level

while blocking access to the other fevels. The third section lists suggestions from
jresearchers and other educators for ‘eliminating misconceptions and errors and
for broadening students’ understanding of algebra.

Student Errors and Mjsconceptionsj

The concepts of variable and'equation are central to algebraic understanding.
and so nuisconceptions surrounding these two concepls ar central to failure in al-
gebra. Wagner conducted & study to delineate some of the carly misconceptions
that are commonly developed. (22) She interviewed 30 students from the ages of
10 to 18. and her focus was conservation of equation--that is. the ability of an in-
dwidual to, recogmze the irrelevance of changing noncritical attributes, in situa-
tions m which variables and equations appear. For example, cach student was
shown the equation 7 X W + 22 = 109. The interviewer then said, **I’'m going
to change this W to an N.™ and showed 7 x N + 22 = 109. The student was

then asked which would be larger, W or N. Those who indicated correctly that -

the change made no difference were deemed conservers. The nonconservers looked
upon the sccond cquation as a whole new problem and, indeed, it was not un-
common for nonconservers to say that, if the two cquations were solved, the first
equation would yield the higher pumber because W comes later in the alphabet
than N. Less than half of the students gave conserving resporises (0 the task and,
though there was littie correlation between age and conservation, there was a sig-
nificant correlation between conservation and-completion of at least one semester
of algebra. ’ )

Wagner noted one tendency among the older nonconservers that is related o
an apparently common misconception about equations: they were convinced that
they had to solve for W and N before they could answer the interviewer's ques-
ton. The mplicaton seems to be that many students view the equation sign as &
signal to do something, rather than as a statement of relationship. This is a phe-
nomenon that 1s familiar among elementary school students. Many can answer
6+ = 9 correctly, but are stymied by 9 = 6 +(3, the equation sign not ap-
pearing in the latter case in the customary “action’* position ("6 + 3 equals 9°").
It now appears that the misconception lingers for many older students as well.

Another misconception about algebra has shown up in at least five unrelated
studics from several countries, namely the persistent impression that variables arc
labels for objects, not number representatives. Foi example, in an assessment of
the mathematical understanding of British children, there was the following task:
“*Bluc pencils cost S pence, red pencils costs 6 pence. 1 buy 90 pence worth. If

¢
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b is the number of blue penals bought and r 15 the number of red pencils bouglit,
what can you wnite down about b and r2** Nearly 20 percentof the I4-year-olds
tested answered with the equation b + r = 90 which indicates they saw b and r
as labels for the objects purchased. (8) Sumilarly. Ekenstam and Nilsson noted from
thetr assessment of methematical understanding among 16-yeaf-old Swedish stu-
dents. “'It seems probable that almost every student would have given the correct
answer to the problem *Write in lowest terms 1515, but only about half of the
students maslcrcd aa. a sign that it was not clear to the other half that the leuer
is used as & number representative.”" (7, p. 64)

In the United States, some recent rescarch has shown that this mmomepuon
persists into adulthood. Clement and his colleagues asked a group of college en-
gincering students to express the following sentence as an equation, wsing S for
students and P for professors. “There are six times as many students as profes-
sors at ths umvérsity,”” Only 63 percent of the students gave a comect answer like
S = 6P. while a typical wrong answer was 6S = P. During interviews, many of
the students who responded with 6S = P maintained that the equation meart **For
cach 6 students there 1s | professor.™ To them, S apparenty was a label for stu-
dents. not & symbol for the number of students, and the equation sign signalled a
correspondence. rather than a numbu equivalence. (4, 5, 6. 18)

NAEP uncovered a similar wehkness i translatiig from word sentence intd
.dgebrate expression. Only 45 percent of American 17-year-olds were able to do
the following translation problem correctly. *‘Carol earned D dollars during the
week. She spent € dollars for clothes and F dollars for food. Write an expression
using D. C. and F that shows the number of Uollars she had left.” (3)

Researct. into algebraic understanding has revealed some common pllhlls in
manipulating and interpreting algebraic expressions:

® A tendency to mux numbers and letiers. When asked to **add < onto 3N™",

nearly half of British 14-year-olds responded with either 7 or 7N. (8) ‘
® A weakness n dealing with denominators in equations. While 70 percent
of Swedish 16-year-olds were able to solve 3(3x - 2) = 2x, less than 30
percent were able to solve (3x - 2)/2 = x/3. (7) ) ,
® A tendency to ignore operations in generalizations. Kieran calls **one of
the most common errors made in algebra’ the inappropriate generaliza-
ionof7a + 7 =at7a-7 = ax(l2) »
® A tendency tognore the merarchy of operations in the solving of an equa-
ton. Thus 2 + 3 x5 isread as a strmg from the left (°2 + 3is 5 times 5
equals 25°"), rather than an expression tied 0 a hierarchy (*°2 ++ 3 x 5 equals
2 4+ (3 x 5) and that equals 2 + 15 which equals 17°7). (12)

® A weakness n interpreting inequalitics. The NAEP rescarchers stated that
mos# 13- and 17-year-olds *“did not understand the special propcmcs of
inequalitics and appeared to treat inequality relationships as equaities.™
For example, about 40 pgreent of the 17-year-olds failed to reverse the in-
equality by a negative number. (3, p. 57)

[l
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® A lack of tannhanty with the notation associated with functions. In the NAEP
assessment, 86 percent of the 17-year-olds correctly answered an exercise
like **What 1s the value of a + 7 whena = 57", butonly haif as many 17-
year-olds were correct on the structuralty similar exercise, “"If f(a) = a +
7. what is (5)2"" (3. p. 67)

Some. 1f not most. of the misconceptions and errors that complicate the learning
of algebra~dre rooted m students first cxi)cricnccs in algebra and the conceptual
frameworks they create to assimilate those cxperiences. Kicran’s rescarch has
shown how students naturally build their frameworks on their arithmetic experi-
ences and how. 1f this 1s not done carefuily, it can ead to errors. (11, 12) She has
idenufied several so-called **conceptual schemes’! that underiic the initial learn-
ing of algebra, among them: :

.

I. Quast-equahty scheme, which is based on the notion that the equal sign is
an operator calling for action, rather than an indicator of equivalence. Two
fands of errors can result from too strong a reliance on this scheme. First.
equations With.an unknown on the wit side are solved in terms of the first
numeral on the right side. Thus, 4+ + x = 2 + 5=11+ 3~ Sissolved
by many students a$ if it were 4 +x — 2+ 5= Il and they putin 4 for
x4 +4<2+5= 1. Second. students derive the notion that it docsn’t
matter when you perform the operations, as long as they get totaled up
sometime."* Thus. Kieran reports that after writingd +4 =2 +5 =11
for the above cxercisc, many students continue with 4 -+ 4 -2+ 5=
il + 3 =35 = 9. Inutheir minds, the task of finding a nuut.er for X and
the task of combining the numbers on the pight side of the equation are not
as integrated as they should be.

2. Redistribunon scheme, which is buse(l‘on the notion that *"taking some-
thing off one number and adding it to ancther does not change dnything.™
Thus., 37 + b = 168 couid be transformed to 47 + b = 158, where 10
is added to onc side and removed from the other. Of course, the samie scheme
applied on one side of an cquation’is valid: 3x + 17 = 47 is equivalentto
3x + 5 =35 +17 =47, . :

Levels of Meaning and Levels of Readiness

What makes the learning of algebra especially difficult, and o too the teach-
ing of algebra, is the matching of levels of meaning with the levels of learner
readiness. Each of the primary algebraic concepts—variable and cquation—can
have several different meanings, depending upon context, dnd a learner’s ability
to understand and make usc of a particular meaning depends in good part on that
lcarner’s cognitive development. (For a more complete treatment of cognitive
development, see (he chapter **Individual Differences Among Mathematics
Learners.”") For the present it suffices to note that until they are in early adoles-

122 )




Teaching and Learning Algebra

»
.

cence (12t 14). most chtldren are concrete operational (in Piagetian terminol-
ogy) and therr thinking 1s largely ted to therr perceptions. Once they enter the
formal operatonal stage of cogniuve development. they are able to do more hy-.
pothetical reasonmg. heep two or more variables in mind at one time. think about
their own thinking. and so on. '

The hines of cognitive development are never clearly drawn. In any random
group of teenagers, there are likely to be individuals who are in the carly concrete
operational stage. others who are late concrete operational. and still others who
are carly formal operauonal, When such a group is introduced to multilevelled
concepts like algébrawe equations and variables, it is not surprising that funda-
mental msconceptions arise. Furthermore. as Matz points out, when young peo-
o ple move from anthmetic o aigebra in their schooling, they are quictly expected

to take a grant leap i their mathematical problem-solving strategies. while they
have learned to expectin arithmetic that merely applying ulgor'ilhms like long di-
viston will see them through, 1n algebra they must compose and carry out plans
for solution. (15) .

Matz 1dentifies several meanings for the concept of equation. First of all, there
t> the meaning that most elementary school children attach t it namely. a con-
nection between a procedure and a result— doing the operations on the feft side

, Of the equal sign produces the answer on the right side of the equal sign “*An-
swer'* 1s an essential component of this meaning of equation An example of what
people have in mind when they apply this mearingis 6 + (1 X 2) = 20. Sec-
ondly. there 1s tantological meaning. with the equation used as an expression of
equivalence between two algebraic expressions. Examples are (x + 2)(X + 3=
x4 5x + 6anddx + 12 = 4(x + 3). Lastly. there arc cquations used to ex-
press constrants on variables, wsually inviting solution. An example is the lincar
equation 3x + 3 = 2x + 7.

From a transcript of a ulassroom lesson, Kemme iliustrates how multiple
interpretations of eguation’ can drive @ wedge into teacher-student communi-
cation. (10)-In the transcripts the teacher posed a problem:

There 15 a certamn wumber of smdeunts in the classroom. If there are twice as
R _nuy and then anvther 10 were added to it, thew there wonld be 42, How mauy
students are there? ~ .
Several stullents arrived quickly and intwitively at the solution 16. The teacher.
stll hoping to use this problem to illustrate how to translate from word probiems
to equatiops, ashed. “What kind of equation could you write in this case” Since
they knew the solution, several suidents answered, quite legitimately: *'x = 16."'
The teacher, of course, wanted the equation 2x + 10 = 42 as an answer. To the
teacher, **cquation’* had a definite functional meaning. a tool for figuring out the
solution. To the students. the term “*equation’" included a tautological meaning:
the mere statement of the answer. Because of these different meanings, the class
discussion turned 1nto a verbal wrestling match, with the teacher trying to twist
¢ \ 11y .
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tus desired equation from the students, while they remained unpersuaded and
confused.
Kemme's transcrpt illustrates a common trap for teachers of secondary school

mathematics. 1t s all too tempting, as Herscovics and Kieran point out, to con-
__centrate on training students to derelop their skill§ in manipuiating equations and

to 1gnore an enurely different skill—constructing meaning for the concept of,
equation, Kieran's rescarch has convineed her that facilitating the learning of this
skill-1s not an easy task. The impression arong most adolescents that equations
are what they appeared to be in arithmetic—expressions of the process that be-
gins with a computaton and ends with an answer—is an impression that resists
change. (12) The secton of this chapter entitied “*Teaching Algebra™ discusses 7
some proven methods for changing this impression.

At the same ume they are constructing meaning for the concept of equation,
students must also come to grips with the several levels of meaning for the con-
cept of varble if they are to develop a deep understanding of and facility with
algebra. Hart's report of England’s extensive research program, Concepts in Sec-
ondary Mathematcs and Science (CSMS). lists six different*interpretations thiat
algebra students must attach to the use of letters in equations () We list these
iterpretations and melude examples of questions where cach interpretation i ap-
propriate.

F

. The letter has a numerical value from the outset—'*What can you say abowt
MifM = 3N+ landN = 42"
2. The letter 1s not used directly, and can be ignored to the extent that it need
not be cvaluated—"1fA + B =43, A + B + 2= 7"
The letter is used ay a shorthand for an object, or for an object in its own
right. For example. *'2A + 5A & ?7
4. The letter is used as a specific but unknown number—""Add 4 onto 3N
- 5. The letter 15 used as a generalized number, able to take on more than one
valuc—"*What can you say aout C if C + D = 10and Cis less than p”
6. The letter is used as a variable, that is, it represents a range of unspecified
values, and a systematic relationship is seen to existbetween two such sets
of values—""Which is larger, 2N or N + 22" To understand this question
well enough to answer it, a student must be able to grasp howboth 2N and
N + 2 will vary as N varies,
The CSMS study revealed that the majority of British students aged 13, 14 or
. -15 were not able to cope consistently with exercises that called for Interpretations
4 through 6 above. To Hart, this implied they were still concrete-operational and
that they would need to develop into the formal operational stage before they could
move smoothly among these last three interpretations. Since a basic understand-
ing of algebra depends at Icast on Interpretation 4 and later applications of aige-
‘bra depend on Interpretations 5 and 6, it is clear that it is possible to overtax the
readiness of many teenagers to solve algebraic problems. It is important to chal-
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lenge algebra students, but it 15 equally important t align the challenges with their
cognitive development.

Some researchers have sought to define that alignment more clearly. From his
work with engineering students described carlier. Clement reminds us that un-
derstanding an equation 1 two variables (S and P in his problem) appears to re-
quire an understanding of the concept of variable at a deeper level than that required
for a vne-variable cquation. (4) Adr conducted a study to determine whether in-
divwduals were more suceessful with one approach to solving equations than with
another, according o thew level of vogmtive development. (1) She considered two
approaches to solving equations: :

I.  The reversal method: ¢ _ X = 2 _ 4

3
“What must I subtract .
from S0 feave 22" so ... X =2 _ 4 . R
3 ]
“What divided by 3 gives x=2=9
’ 3 as an answer?', 50 .7
“What number, take away 2,
leaves 977, so... x = 1l

» ’ . ] -
2, The compensation method (if you act on one side of the equation, com-
pensate by doing the same to the other side):

[+
s-X=22)
3
s-X=2_92=2-2
K
-
3-3"=2=0
3
-_ x-—') x—?_
3-2- =42 == ~
3 3 3 ‘
3
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Adi concluded from her study that, of the two mcthods. the reversal method was
much easter to lean for indhividuals at the carly concrete operational stage than
tor individuals at the carly formal cperational stage. For the latter group. the re-
sults did not favor cither method over the other.

i Errors and misconceptions in aigebra are not random. It is a new terrain for
students, yutte different m itsdemands than the arithmetic they are used to, and
the magonnty of students begin their algebra experience with developmental lim-
\atons. As a result. many overgeneralize the rules that, have worked forthem in
arithimetic (**Which-has the larger solution, 6N + 3 /A~ dlor 6T + 3 = 41?1

> won't know until 1 find the numbers that work.™ g{ the rules that have worked
for them before in algebra (*Solve xi= 3x + 2 7’7. When | had x* = 3x + 2
=0.lsetx ~1=0andx = 2=0.50X =z’or.\' = 2. Now l'lisct 5 = 1
=7amdx -2 =7 s0x = §orx = 9). Matz studied this phenomenon of
over-generalization and concluded that adept probicm solvers generally try to re-
write an unfamiliar pfoblem so it can fit a relevant rule, while unsuccessful ai-
gebra problem solvers get hooked into alterin vthe rule to £it the unfamiliar problem
Changing a rule to fit a problem isn’t alwilys wrong (**There probably is a rule
that says thatak + ay + az = a(x +y f 2) since there is a rule that ax + ay
= a(x + ¥)."). but Matz's work conf)"rms that good problern solvers are noj
trapped into using it as a general strategy. (15)

Teaching Algebra

Many of the research studies thay have investigated how young people leara
algebra have also contained teaching components. Once the researchers have
wentified thought procgsses, succéssful strategics. crrors, and misconeeptions.
they apphed some experimental iy struction in an attempt to climinate the errors
and nusconceptions. For cxumpl{é, Herscovics and Kieran recognized how natu-
ral 1t1s for teenagers to perceive algebra as generatized arithmetic and so they de-
signed a dequence.of instruction thai can take advantage of this perception. while
it INNRIZes some of the fuls? generalizations many young people make. (9) In
opting for this stratggy. the pescarchers were on solid ground made evident by
tescher effectiveness rg.seurcﬁ cffective mathematics teachers identify and com-

municate the continuity of giathematics to their students. (2)
Herscovies and Kicrary also chose to heed the research on cognitive devel-
opment, and so avorded 7\ carly plunge into a totaily symbolic approach to equa-
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tions and unknowns. Instead, they began by working with their studeats (12- and
13-year-olds) on strictly anthmete equations. focusing on the notion of equiva-
lence and mvestigating the effects of various operations on equivaience  An es-
sential component of their instruction was & sequence of nondirective questions
aimed at giving students room to construct meaning for the concept of cquation
Thus,

L3 .

5

**Can you use the equal sign' with an operation-on both sides™”

M

produced
Ix4d=4%X3S5 .
. 24 6=0+2
. **Can you give me an example with a different operation on each side”™
produced ) >
54+3=35X2
o q
**Can you give an example in which you have more than one operition on cach
side?”” )
producel
dX3I+ 1 =3=3x2+4
3453 +d=R~44+4

The rescarchens defined such identities as “arithmetic identities.” leaving the
term "“equation” for the algebraic usage, and leaving themselves free to build the
bndge from the familiar **arithietic identity™ to the less familiar “equation ™ .
Given the evidence that cognitive development is an everpresent influence on @ o N
young person’s intitial learning of algebra. the rescarchers recognized that bridg-
g the two must paralicl the bridge fromconcrete represcntations to abstract rep-
resentations. Henee. the first step on the bridge was to cover onc of the numbers
i an anthmete identity with a finger and to define “*equation™ as **an arithmatic
identity with a hidden number, ™ ,
“What's the hidden number in this equation?™

+3+4=12-4+4

£y

2
A

= a
At the next kevel, the indden number was represented pictorially, namely. with a
box: . '
6+ O -1=5x2 ..

Finally . after working with equations represented in thgse concrete and pictorial
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ways. the students were ready 1o deal with the abstract representation:
2Xa+5=7+6

Interested teachers should read Kicran’s papers (11, 12) and the article by
Herscovics and Kieran. (9) Briefly . however, therr research study led to the fol-
lowing two conclusions:

3 ‘ 1. The throwbach notion among young teenagers that cquations are expres-
sions of action 1n which numbers are acted upon and answers produced,
though resistant to change. does tend to change after an instructionai se-
quence like the one described above.

2. When Herscovics and Kieran tested their students after a summer layoff,
they found that gathering unhke terms {e.g.. saying that 7a + 5 =40is
equivaient to 12a = 40) had become stronger, not weaker, as a conceplual
scheme applied to simplify equations. As Kieran points out. however. re-
search on how people process and retrieve information shows that old ideas
die hard, cven after instruction has seemed to put the wrong old ideas to
rest. Renewed.instruction—again based on the student’s constiuction of
meaning for the concept of equation—would scem to be necessary to al-
low many students to assimilate the appropriate schemes for handiing

' cquations. . .

The rescarchers made the following three recommendations:

- I. A sequence like the one outlined above should precede the more tradi-
tional and typical initiations to algebra, like *‘think of a number'’ exer-
cises and word problenis.

[§%)

_ To circumvent the sort of confusion about conserving variables that Wag-
ner reported, a variety of tetters should be used to represent hidden num-
bers in cquations.

‘»d

Teachers should not be too directive in teaching **Do the same operation
to both sides of the equation,” The students who worked with Herscovics
and Kieran scttled comfortably into this strategy as a way to decide if two
expressions were equivalent (“*“Someone started to solve this equation: 6
+ 39m — 4 + 2 = 43. This was the way they started off: 6 + 35in +
2 = 43, [s it alright to do this, or not?”*), but the novice studeats, espe-
cially, did not find the strategy helpful in solving equations.

Cogmuve development is an ongoing process of assimilating information into
conceptual schemes and adjusting the conceptual schemes accordingly. Itis not
always a process that progresses smoothly, however, and so occasional lapses in
students’ algebraic skills and understanding should be expected by teachers.
When Hart and her colicagues realized from the CSMS study that so many
British teenagers had little access to three of the six interpretations of letters used
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1n cquations, probably because of their not having developed yet beyond the con-
crete operational stage., chey saw the need to recommend activities that are more
pictonal than symbolic. and so allow concrete-operational students to construct
meanng for the concept of variable. Here is a suggested exercise. (8, p. 118)

Ask students to find the manber of white tiles needed for perhaps 10, 20. 40,
and eventally 100 black tiles. Challenge them to come up with a rule that
expresses the relationship benween the numbers of black and whire tiles.

With many pre-algebra students any discussion of patterns or rules need not be
expressed symbolically or algebraically. What is more important is that they have
the chance to become familiar with. and discuss, variable relationships such as
the dependency in the above example of the number of black tiles on the number
of white tiles. .

. The longer an algebraic misconception persists, the harder it is to remove it
through instruction. Rosnick and Clement confirmed this principle when they
worked with nine of the students who reversed the variables S and P in the stu-
dent-professor equation. (18) They tricd seven different ways to change the pat-
tern of reversal., ranging from just telling the students that the reversal is incorrect
to asking the students to draw graphs or to test the equations by plugging in num-
bers. At Icast seven of the nine students demonstrated to the rescarchers, in one
way or another, that they maintained the reversal misconception even after the at-
tempts at remediation.

What can teachers do to prevent misconceptions about algebra from becom-
ing so deeply rooted? One strategy is to engage students in an early, pre-algebra
process of constructing meaning for cquations and variables, such as that pro-
pused by Herscovics and Kieran, Teachers can also guard against the growth of
misconceptions by carcfully monitoring their own use of language in algebra
classes. For example, Rosnick points out how casy it is for teachers to drift into
carcless remarks like *‘Let P = professors,’ rather than the more pedagogically
sound *Let P = the number of professors.”’ (17) As is clear from the work of
the researchers cited in this report, both *‘equation’’ and ‘‘variable” (or ‘‘un-
known'') have multipic levels of meaning, and the meanings a teacher attaches
to the concepts at any onc time must match the meanings attached by his or her
students.
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Usishin has developed an extensive program to mcorporate meaning into the
learning of algebra through the regular use of applications. (20) In particular, the
goal of the program, Algebra Through Applications, is the construction of alge-
bra out of real-world problems, rather than the application of an already-con-
structed algebra to real-world problems. Usiskin has eliminated some topics he
beheves need no attention 1 beginmng algebra, such as traditional word prob-
lems (**John can shevel a walk n 3 hours and Mary can shovel it in 2 hours. How
fast can they shovel the walk if they work together?”), trinomial factoring
(x*+6x +8 = x * 4{(.\ + 2)) and the manipulation of complex {ractional

expressions _ X = (20
X+ Ix -4 -

tnstead. the program emphasized probability, statistics, operations, and
problems and pattems ansing from real situations, such as politics and various tasks
in measurement.

The program has been wdependently evaluated, with groups using the pro-
grant compared with groups taught traditionally in 17 schools. (19) For the most
part, there was no sigmficant difference in achievement between the two groups
on achievement on several tests, although in 6 of the 17 schools the applications
group did sigmficantly better on a test designed to capture the materials in the
program and did no worse than the traditional group on a siandardized algebra test
The reseagghers who conducted the cvaluation concluded that, at the very least,
the materifls can be used with traditional first-year algebra textbooks as a source
of rclevant applications. They did, however, recommend that schools adopting
the materials conduct a faculty seminar on their usc.

Microcomputers promuise to be a rich source of algebra leaming activitics. Since
many algebraic investigations can become mired in lengthy computations, the
computer can make such investigations more accessible.

Deternuning the solutions of polynomial equations provides one such exam-
ple. Given a positive integer N and integers Ay, Ay, —, Ay, how could you find
solutions for Axx™ + AguX™ + ... + Ax + Ay = 0? For advanced algebra
students the question is a rich one, loaded with potential mathematical learning,
but prohibitive because of the computations required. Moursund has developed a
program for the microcomputer that allows students to probe their way, using graphs
and tables, to the discovery of solutions. (13, 16) Zabinski and Finc have shown
how the computer can be used to develop a discovery approach to quadratic
equations. (23).Landry has detailed how his students’ use of microcomputers to
approach a topic for which the computer is not particularly well-suited—solving
lincar cquations like 3x + 2 = 4x — 7—led with some incidental development
to new and deeper insights into lincar equations. (14) .

The potential of the microcomputer as an algebra teaching and learning aid is
undemable. One study has confirmed the value. As a follow-up to their research
mto algebra misconceptions, such as the student-professor cquation reversal,
Clement, Lochhead. and Soloway attempted to find ou! if a basic introduction to
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computer programnung, where variables clearly represent numbers-and where an
- cquation expresses the equivalence rcsulling from the interaction of variables and
numbers, could change the misconceived -tendency.among many vetcran algebra
leafners to perceive variables as labels for objects and cquations as statements of
correspondence between the labeled objects. (6) The researchers found that with
just some introductory programmming expericace, most students who ended to re-
verse variables wrote equations correctly when they constructed them in a pro-
gramming context (At the last company party, for every 6 people who drank soda.
there were 11 people who drank punch. Write a compuler program in BASIC which
will output the number of punch drinkers when supplied with the number of soda
drinkers. Use S for the number of people who drank soda and P for the number
of people who drank punch.’’) Conceming their results, ‘the researchers hypoth-
esized: **Computer programming apparently encourages an active, procedural view
of cquations that many students fail to use in the context of algebra.” (6,p. 1)

“The results of this study are exciting in themselves and they arc even iore
exciting because of the compatability they hint at between computers and the
teaching of algebra. Further rescarch is imperative.

»

o

Conclusion

In this chapter we have focused on the concepts of variable and equation. Other
topics are important to algebra teachers and students, of course. such as functions
and graphing. but since the effective Iearning of all topics hinges on an under-
standing of variables and equations., we have chosen to concentrate o the two
fundamental concepts in this report and to leave the others for treatment clse-
where. . '

Perhaps more during beginning algebra than atany other time in their school
careers, secondary school students must sce mathematics as a forcign language.

_ There are multipie levels of meaning and various visual and symbolic represen-
tations. As with any foreign language, translation skills are essential to success.
and algebra students must leam to translate between visual and symbolic repre-
sentations and among the_several levels of meaning for variables and cquations.
Helping students to learn these translation skills is ope of the most difficult tasks
faced by anyone in the teaching profession, and despite the promising textbooks
and computer programs that have appeared and that will appear. the teacher re-
mains at the center of that task.
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Does t(aditjonal deductive geometry have a future in the
curriculum? Many students find it very difficult and I find it
difficult to convince students they should take it.

¥

Among, adults' recollections of school rathematics. those connected with high
school geometry are often the most vivid. Tks combinations of propositions, proofs,
problems, and constructions that areencotatered there seem to leave few indi-
viduals with luhewarm reactions. Either th: expericnce was refreshing for them
n'its consistency and clarity, or it was painfully frustrating. Because the latter re-
action 1s not upcommon. and because about 50 percent of high school students
now choose not to enroll in geometry courses (14), some educators question the
value of traditional Euchd-based geometry and wonder whether we shouldn’t just
let it disappear fromthe high school curriculum.

When it 1s viewed as the study of space and spatial relationships, and not just
as the-deductive system that Euclid built, gcometry has an acknowledged solid *
footing m mathematics education. Usiskin (22) cites three reasons for this solid
footing:

i) Geometry connccts mathematics and the real world.

11) Geometry enables ideas from other areas >f mathematics to be pictured.
For example. gcometry lends visual aid to subjects like advanced algebra
and calculus. and hence makes them more accessible toJearners.,

1) Geometry 1s an example of a mathematical systemni‘Kﬁlct, one of the

carliest examples available to students.

The force of such standing. in the mathematical family argues against elimi-
naung geometry from the high school curriculum. Yet, undeniably, geometry lacks
stature among high school students. In the recent National Assessment of Edu-
cational Progress (NAEP) in Mathematics, **doing proofs™" received the lowest
1 like™" rating by seventeen-year-olds from a list of content topics. Worse yet,
less than 50 percent saw the topic as important. (2)

Thus, the concern of teachers like the one whose questions opens this chapter
15 very realistic. it divides into two questions that may be addressed by research-
ers and curriculum developers. First, why do so many students have trouble learning
deductive geometry? Sccond, what strategics and materials are available for making
geometry understanding more accessible to students? R

The remamder of this chapter treats each question inturn. In brief, an answer
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to the first question 1y taktng shape from several rescarch studies that have iden-
tified some apparent musimatches between traditional geometry instruction and the
cognitive needs of most teenagers. Out of this and related research and devel-
opment come answers to the second question. In particular. the strides made in
delmeatng the several levels of geometric understanding. combined with the tre-
mendous potenual for using microcomputers to ad in geometry instruction, make
1t appear that geometry, sumewhat changed in content and presentation will zail
new life in the high school curriculum.

Difficulties in Learning Geometry

_Young people can have a vanety of difficulties in jearning geometry. ranging
from vocabulary to visualizeaon, aund from making deductions about the prey
eities,0f geometric figures to applying those properties to real-worid problems
During the past decade several studies have probed the nature of those difficul-
ties, while others have sought their source.

[n its geometry section the recent National Assessment of Educational Prog-
ress (NAEP) dealt primarily with geometry ideas students would probably en-
counter outstde of a formal course in deductiv.. geometry. The results showed that
students could generally recognize geometry figures. but they were less success
ful i their knowledge about properties of those figures (for example.. that the sum
of the angle measures of a triangle is 180°). Furthermore, high school students

. who had taken geometry for a year generally scored much higher in knowledge

about geometric propertics than their peers with ho formal trainiig in geometry
Evenn figure recognition. students tended to run into problems if certain vocab-
ubary terms Ike **congruent”” or **symmetric™" were used. When'a problem used
the phrase “*same size and shape’” rather than “congruent,”” the success rate for
the problem was considerably higher. ) -

Another NAEP conclusion dealt with problem solving. The majority of both
13-and 17-year-olds were unable to solve routine probiems involving similarity
of triangics or the Pythagorean Theorem. Among the students with a year’s ex-
perience 1 a geometry course, slightly more than half solved the Pythagorean
Theorem problem correctly, while two-thirds solved the following similarity
problem correctly:

fordS FV

i 30 Fu.

u

The prcture shows how Jose used a short tree to find the height of the tall tree.
What answer should Jose get?
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Difficulnies wuh Visualization and Vuwbulur?\. The NAEP researchers were
able to reach several other conclusions from students’ incorrect answers First,
.students can handle some géometric problems much better if fhcy are able to deal
directly with  visual representation of the probiem than if they are required to
work from an abstract representation of the problem. For example. when 13-year-
olds were shown various triples of lme segments and asked to Select the triples
thatcould serve as sides of a tnangle, two-thirds of them were able to do the task
suceesyfully, yet when they were given the same task with only mentber triples
_work with, almost 90 percent failed the task. More than 80 percent of seventeen-
year-olds failed the same task. (2) ¢
A second NAEP conclusion concerning students” interpretations of diagrams
will come as 1o surprise to most geometry teachers. When hard evidence is lack-
ing. students will often make conclusions based on appearances alone For ex-
ample. m a diagram 1 which insufficient information was given to allow students
to deduce the size of a given angle, 30 percent of the seventeen-year-olds wefe
duped by the angle appearing to be 90°. Among the subgroup ol seventeen-year-
olds with a vear’s geometry experience, however, two-thirds responded correctly
that there was insufficient information.

" In a sumilar vem. Robinson has listed 25 common difficulties and miscon-
ceptions of stydents i geometry. (20) For example, she found that many students
have trouble recognizing overlapping triangles, as'in the task of pointing out why
there are more than three triangles in the following picture:

As iwappears wn this exercise, overlapping is a relation between triangles and,
wn fact. most of the 23 difficultics Robinson outlines involve relations. including’
is parailel to
is perpendicular to
is supplementary to
is complementary to
is in the same ratio as
1i$ congruent o
bisects
Vollrath studied one particular difficulty many students have, namely. recog-
nizing sunilar geometyie shzi;pes. (26) Working with young people who ranged in
age from 8 to 19, Vollrzth set them to work on sorting tasks---exercises in which
they were shown collection of shapes and asked to group together all shapes ina
particular collection that fit a certain criterion. At times the task was 2xpressed
as *'Put all sinlar figures together™, at other times, the ilstruction’was *‘Put all

-
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figures with the same shape together.” Neither task proved casy atany age level,
but an wteresting phenoinenon revealed itself, one that underscores the impor-
tance of teachers’ awareness of their own use of language. Sorting according to
stmlar* Ted students to focus on attributes of particular figures within a group-
mg. while ““same shape™ led them to focus on broader paterns. For example.
“sumtlar’ led to sorting out atl rectangles in a group with the same width, while
“same shape’” led to sorting out alf the rectangles, as if the students were iden-
tifying **same shape™* with *"shape-name’”.
Vinner and Hershkowitz tested over 500 students in grades 7, 8. and 9 to identity
what hinds of nnages young pevple attach to certain geometric concepts (25) For
example, when ashed to cirele-in a group of drawings all of the right triangles,

fewer than 70 percent included wdwburcly 40 percent in-
* ?
. -5 . . =
. cluded _/j-‘: Apparently, lt and jarc images assoeiated so tightly with the

concept of right triangle that there is little room for variation.
Smularly, when. they asked the students to draw altitudes to various triangles,
fewer than 10 pereent were able to do it correctly for side a in a wiangle such as

——— e — — -

&

The resgarchers concluded that, in the minds of most young people, the image of
altitude to the base of an isvsceles triangle replaces a more general image for the
concept of altitude.

Fisher studied how students distort geometric concepts because of the influ-
ence of pictures. (5) In particular, she was concerned with the type of distortion
, w which students make incidental visual clues into essential features of a con-

cept. Thus, a vertical-horizontal orientation can become s0 attached to the con-
cept **perpendicular’” that something Iikc\4 will notseem to be an example of
the concept. Fisher ashed the question, **Do students form concepts that are biased
in favor of upright figures?™* Her suidy of 6th-graders, 9th-graders and college
students convinced her that the answer is yes and that, regardless of instruction
favoring upnght figures or instruction favoring a variety of orientations. students
at all levels can more easily recognize upright figures than tilted figures as ex-
amples-of concepts.

Proof leads to student difficuitics that are probably the most conspicious of
all such difficuiues to geometry teachers, in good part because proof isone of the
most sophisticated challenges in all of school mathematics. The chapter *The Path .
to Formal Proof** focuses on the topic in detail. The present chapter views it in
context, as one of the last in a line of difficultics, and concentrates on the Kinds
of concept and shill development young people must pass through in order to be
ready for deductive proof.

s
(9%
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One model of that development that has reccived considerable recent atten-
ton 1 the van Hiele model. According to the malel, all children progress through
several levels of geometric understanding, and the van Hieles have claimed that
a combnation of time. content, and teaching methods will carry cach child from
one level to the level followng it. Several very good descriptions of the van Hicle
model are avalable, and interested teachers can read about it in detail in Refer-
ences 3. 10, 20, 23, 24, 27. Hoffer's description (10) is very well written, and
because he includes many examples withrhis deseription, we strongly urge tzach-
ers to read it. Briefly. as he describes them, the proposed levels arc:

o

Level 1. Recogmuion, The student learns some vocabulary and recognizes a
shape as a whole. For example, at this level a student will recognize a picture of
a rectangie but usually won't be aware of many propertics of rectangles, such as
paraliel opposite sides. C

Level 2. Analysis. The student analyzes propertics of figures. Al this fevel a
student may realize thyt the opposite sides of a rectangle are paraliel and con-
gruent, but will not yet notice how rectangles relate to squares or right triangles

Level 3. Ordermg. The student can logically order geometric figures (for ex-
ample, all squares are rectangles, but not all rectangles are squares), and under-
stands nterrelatonships between figures and the importance of accurate definitions

Deductive thinking skills are not fully developed at this level. Although stu-

' dents at this levei may be able to understand the relationship of the class of squares
to the class of rectangles., and the relationship of the lat. r to the class of paral-
lelograms, they may not be able to deduce why the diagonals of a rectangle are
congruent.

Wirszup has described how deductive thinking begins to take shape at Level
3. As students collect the visual propertics of various shapes, the growing col-
fection asks for organization, and that is the start of deductive thinking (27)

Level 4. Deducnon. The student understands the significance of deduction and
the role of postulates, theorems, and proof.

At this level students will be able to use postulates to prove stutements about
rectangles and triangles, but this thipking may lack enough rigor for them to un-
derstand why the postulates are necessary.

Level 5. Rigor, The student understands the importance of precision in deal-
g withfoundations, such as the collection of axioms and postulates at the foun-
dation of Euclidean geometry.

This 1s a level of sophisticated thinking rarely reached by high school stu-
dents. Later, 1n coliege mathematics, many will be able to reach an overview of
Euclidean geometry that permits them to adjust to the different systems of non-
Euchidean geometry, where rectangles, for example, do not exist. In the mean-
ume. however, the vast majority of high school students never get beyond hon-
ing their deductive thinking skills at Level 4, if they reach that level at all.
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I'he propt shalls that reach frntion at Level 4 begin to develop at carlier levels
and evolve threagh ther owa set of sublesels. Van Dormolen (24 has described
three such sgblevels:

“a. Proofh that are very local and case-specific. For example, if asked to de-
scsibfé\l‘he effect on points in the planc of a rotation through 90°, swdents
a thiis Sublevel will pick a powt, say (2,3). carefully rotate it 90° to get (—3.
2).'4nd sfop there.

&

cases and not on single cases. With the above example, students at this
subJevel can look beyond the single case (2. 3). In fact, they might even
deduce that (2. 3) rotates to (— 3. 2) from the realization that (2. 0) rotates
to (0. 2) and that (0. 3) rotates to (=3, 0).

¢. Proofs that are general. At this sublevel, students can prove that any point
{a. b).rotates to (~b, a). ; ,

[t 1s important to point out that the van Hicle model of levels of geometric un-
denstanding is a hypothetical model. In fact, van Hicle himsell has recently voiced
doubts about the existence of Level 5. (23) However, several studies have shown
that the model is aevaluable tool for exploring geometric understanding.

Usiskin and Senk conducted a study of several thousand high school geom-
etry students to determine what changes in van Hiele ivvels take place during the
year of geometry. and to determine how well the van Hicele levels of students en-
tentng high school geometry can predict the level of their, proof skills at the end
of their year in geometry. (21, 23) Of course. in order to make these determina-
aons. the researchers had to begin by determizning how many of the students fit
the van Hicle model and. of those who did, what their levels were. With sets of
qquestions representing tasks at each level as the gauge. the rescarchers ruled out
students who qualified for two’levels but not the level in between Here are two
examples of the questions they asked, one for Level 1, the other for Level 3:

Level i: Which of these are triangles?

~— N

8] \% W X
{A) None of these are triangles. .
(B) V only
(C) Wonly
(D) W and X only <

(E) V and W only

Level 3: What do all rectangles have that some parailelograms do not have?
(A) opposite sides equal
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(B) diagonals cqual
(C) opposite sides paraliel
(D) opposite angles equal
(E) none of (A)«(D)

—‘—r—-——nvm.—----v—._—.w—‘w,.‘_l
-
%

According to their criterion, about three-quarters of the students fit the van Hicle  ©
model. Remarkably. over one-haif of those students were at Level 1 or below!

The study detemuned that during the year of geometry, more than 50 percent
of those students at the Towest level moved to Levels 2 or 3. but that about a third
of them remained at Level 1. (23) Furthermore, the study found that after a tull
year of 3 geometry course with proof. only about half of the students could do
miore than simple proofs. (21) Finaily, as a predictor of how well students wiil do
with proof after a year-long gecometry coursc, the van Hicle model proved to be
somewhat successful. In particular, it appears that if a student enters geometry al
Level 1 or below. there is littie chance of success with proof. Level 2 implies a
better than even chance of success. and Level 3 and above imply a good likeli-
Yood of suceess. (21, 23)

Since Mayberry's research indicates that a student may be on different van Hicle
levels with respect to different topics within geometry ( 18, 23). it is clear that re-
searchers have not finished the task of defining the development of geometric iné
derstanding. In general, however, the van tHicle model is proving to be a valuable
tooi for the task.

Instructional Strategies

Once teachers get a clearer view of students” dif ficultics with geometry and
the sources of those difficulties, they can begin to adjust their teaching stratcgies
accordingly. For example. Wirszup points out that one implication of work with
the van Hicle model is that maturation in geometry is a process of apprenticeship,
and not just of development. (27) Conscquently. teachers need to explore ways
to smooth their apprentices” learning at cach level. Coxford suggests the follow-
ing list for <tivitics at the first 4 van Hicle levels (3):

- Level 1. Individual figure-recognition. production. and naming.

Level 2. Determining propertics of the figures.

Level 3. Determining relationships between the figures and their properties.
Thus. what are the properties of paraliciograms, how do rectangles fitin with
paraliclograms, and so on.

Level 4. Use of Level 3 knowledge to study geometric facts from a deductive
approach. Thus, what can be deduced about the interior angles of paraliclo-
grams once it has been established that opposite sides are paralici?

All of these activitics shouid be carried out through class discussions, based
on student obscrvations and hypotheses. Reiterating what van Dormolen pointed
out. a student setties into deductive proof only in stages. first concentrating on

S
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single mnstances of a phenomenon, later collecting sumilar instances into a pat-
terned array. then finally arguing on the most general level. When students can
verbahze therr understanding, or lach of understanding, of phenomena, their piecing
together of lues to discover patterns., and their logic in deducing properties. then
their apprenticeships can “proceed more smoothly.

Some recent research by Greeno and Magone promises to strengthen the
teacher™s hand 1n proof mnstruction. (6) At the heart of their study was a convic-
pen that students must undentand what proofs are before they can understand how
to,construct them. In particular. they must appreciate that the rules of formal de-
ductive proof are more stringent than the rules of every day argument. In the latter
Lase, statements are expected to be reasonable and noncontradictory in the light
of previous information. Each statement in a formal proof, however, must not only
be consistent with presious statements that have been—accepted. but must neces-
sarily follow from them.

The, researchers call ths **the principle of deductive consequence ™ and they
decided that a reasonable gauge of students’ understanding of the principle would
be a test of proof-cheching. give students some completed geometric proofs with
hidden errors and challenge them to find the errors. In some instances, the error
might be the listing of a reason for which no geometry theorem or postulate ex-
1sts, n others. the error might be the use of a theorem whose conditions had not
been established. exther in the statement of the original problem or in previous steps
in the proof. In the following example. the reason listed for Statement 1 does not
apply because it has not been established that AC is paralici to BD.

8

< ) E

Given AB Il CE  and AB=CD
Prove: ZACDZ= ZABD

Statement Reason

1. LACD= £BDE < corresponding Zs
2. LBDE== ZABD alternate interior Zs
3. LACD= ZABD transitive property

The rescarchers designed a two-hour traiming program in checking proofs for
15 volicge students who had taken geometry in high school but who were not very
good at cheching proofs. The program taught the students to apply the following
5 steps whenever they were checking proofs:

1. Check 1if the reason given for a statement is a v alid definition, theorem. or

postulate. !
2. Divide the reason into its *“if"" and *"then’” components.
3. Check the *if*"* part. Has 1t been shown previously in the given informa-
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- tion. in the diagram, or in the previous steps of the proof?

4. Check the “"then” part. Does it match the relationship in the proof state-

3

F

3 ment being checked? =

E 5. 1f the stacment 1s the last one in the proof, does it match the goal of the
} problem? g

3

The students were tested in proof-checking along with® 15 comparable Stu-
dents who did not take part in the two-day training session. The trained students
were superior in their proof-checking. For example, & out of the 15 training pro-
gram students were able to detect the error in the example given above, while only
| out of the other 135 students was able to detect the error. Furthermore, observ-
ers reported that the program students appeared to read the statements of a proof
more carcfully than the others, Finally, in a test to see how weli the 30 students
could construct proofs, the 15 program students were superior to the others,
prompuing the researchers to remark: **ltseems likely that the training in proof-
checking gave subjects some skills that facilitated their performance in proof
construction problems as well.™ (6, p. 36). The benefits of the two-hour training
sesston scem remarkably rich, and geometry teachers should consider doing some
similar training of their students in proof-checking.

In Ius article **Geometry Is More Than Proof,™" Hoffer (10) points out that
lcarning geometry involves five kinds of skills :

«

®  spatial .
e verbal

® drawing

® logicai

® applied

He deseribes the kinds of activities that typify cach of these skills for each of
the van Hicle levels. then hsts activitics that are appropriate for each of the skills
« ateach level. For example, a verbal skill on Level 3 is *‘Formulates sentences
' showing interrelationships between figures.” A verbal activity for Level 3 is " Write ,
a careful and brief definition of the word "rectangle’’. :

Transformation Geometry

g One vehicle that many educators propose for paving the way through the fev-
els of geometric understanding is transformation geometry, that is, the study of
reflections (sometimes call flips), rotations (spins), and transiations (shdes) in the
plane. Robinson, whose work was citedcarlier as revealing the prevalence among
students of difficultics with relational terms, argues that by studying the effects
of such transformations—in particular, what properties stay invariant under them—
students can develop meaning for relational terms like **congruence’’, ‘“perpen-
dicularity”” and so on.

For example. congruence remains invariant under reflections, but oricntation
(clockwise vs counterclockwise) does not. By cxperimenting with combinations
of transformations and discussing their effects, students can deveiop meaning for
relational terms their teachers will introduce shortly thereafter.

-
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Transformdnion geomelry 1s not new to mathematics education. In fact, the
nineteenth-century mathematician Felix Klein defined geometry as the study of
what properties remain invanant under different sets of transformation. In the case
of Euchd’s geometry, that set comprises combinations of reflections, rotations,
and translations in the plane. Transformation geometry, gained some pior inence
n the so-called “modern mathematics’* movement »f the nineteen-sixties, and it
has always been considered part of mformal geometry, traditionally suggested for
study in grades 7 and 8 as *‘the physical gcometry of the space we live in, rather
than as an abstract mathematical system.”” (19)

In most American school systems, if transformation gecometry has been taught
at all. it has been taught at the junior lmgh level and separated by at least a year
from formal deductive geometry. This is pot the case in some other countries, nor
s 1t the recommendation of most mathematics rescarchers in this country, who see
a solid role for the topic in high school. Kartowski has pointed out that the So-
viet mathematics curniculum gives equal weight to two aspects of geometry, the
< jal-visual and the logico-deductive, (13) Wirszup has studied the Soviet ex-
peaence in designing a geometry curriculum around the van Hicle model. They
pay careful attention to the “apprentice ™" aspect of the theory, according to which
a student’s develupment through the vanous levels depends on instruction and
curriculum content, as well as biological maturation. (27) A~cordingly, the So-
viets dre quate speific in ther geometry objectives, for example, aiming to begin
Level 3 work 1n grade 4. Because of its natural combination of the spatial-visual
with the logico-deductive, transformation geometry pla; s a cruciel role in this
curriculum.

In Great Britain the role of transformation geometry in the curriculum has not
been as substantial as in the Soviet Union, but a recent major study has under-
scored the advisability of beefing up 1ts role. Hart and her colleagues-conducted
the Concepts in Secondary Mathematics and Science (CSMS) study, a project
similar in scope and in many of its goals to the NAEP study in the U.S. (7) The
study consisted of interviews and tests of British students between the ages of 11
and 16. One of the mathematics sections contained a serics of questions involy-
g combinations of rotations and reflections. The tasks runged fron relatively
simple questions like:

What 1s the image of the given point when it is reflected through the
given line? :
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to a more difficult challenge such as:
**Explain why E is not the center of rotation in this picture. ™

The tashs that nvol ed combined reflections and rotations were the most dif-
ficult of all for the students, so difficult, in fa t, that Hart concludes that trans-
formaton geometry can be a viable and cheidenging topic in the curriculum,
separate from but also complementing deducti' ¢ geometry: *“The approach being
advocated 15 one that directs children toward discoveries from which the rules and
propefties of the transformations can be surmised and against which they can be
tested.” (7. p. 157) To this Hart adds her firm belicf that **such activities are vi-
tal to the development of critical thinking. ™" (7. p. 157)

Rescarch confirms the complementary nature of the spatial-visual and the
logico-deductive n the Iearning of geometry. In fact, the aceepted description of
woncept development, especially relevant to geometry. pictures children first act-
ing onobjects. then internahzing the actions, and finally forming conceptval rep-
resentations. { 1) This process, for which there are no shortcuts, holds for older
children as well as younger children. Conscquently, swdents need extended op-
portumties to tnternalize geometrically-related actions before deductive geome-
try. Transformation geometry offers the framework for such opportunitics  As Hart
describes 1t. **The transformations can be internalized in gradual steps. by fo-
cusing firston the actions themselves, then on their representation, and then on
the representation of imagined actions. In addition. the resulting drawings can be
cheched at cach step by a return to the actions or by reference to drawings of sim-
ilar problems.”" (7. p. 157) -

The task of integrating the spatial-visual with the logico-deductive in the ge- \
ometry curmculum will not be simple. and it will require further research atten-
ton. As Fisher discovered in her .tudy cited earlier, students form concepts that
are biased i favor of upright, as opposed (o tilted. figures. ‘Although the bias
doesn’t necessanly stand in the way of geometry leaming, it is resistant to in-
struction. Kidders research into students” comprehension of rgflections, rota-
tons. and transkuons revealed that few eighth-graders were able to form a mental
mage of a figure in the plane and then to mentally performone of the three trans-
formations on 1t. ( 15). Mental representation of such gecometric actions scems to
demand more cogmitive sophistication than is available to most cighth-graders,
and this gives further impetus to the inclusion of transformation geometry in the
high school curriculum. as a complement to deductive geometry.

If transformation geometry can be as valuable a complement to dedugtive ge-
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ometry as researc suggests, a question must naturally arise in the minds of ed-
ucators. *"Where do we make room for it in the high school curriculum?”

Ustshin has suggested a route toward making room by calling for the careful
reduction uf material ordinarily covered 1n deductive geometry. (22) In particu-
lar, he recommends eliminating:

a) Early vigorous proofs of obvious statements involving points, lines, and
angles. He mantains that the facts should be covered, but informally.

b) Expectations that students will be competent with the same general proofs
written 1n the same general way. Usiskin claims: **For judging a proof, clarity
15 a more important crizerion than the amount of detail.”” (22, p. 421) As
corroborating evidence he cites the Soviet rescarch indicating that one of
the hallmarks of a capable mathematics student is the ability and propens-
ity to find shortcuts in mathematics arguments.

«) The Ieast important theorems. Usiskin suggests the climination of 6 sets of
theorems, which he estimates as amounting to 2-3 weeks of class instruc-
tion.

Some may consider Usiskin's suggestions drastic, but their intention is to in-
ject new Iife into the teaching of deductive geometry, an area of the curriculum
that nceds and deserves new life. The research summarized in this chapter has two
main messages that have a bearing on this new life. the timely involvement of
students 1n deductyye geometry 15 a very important and irreplaccable mathemat-
wal expertence, the imeliness of that involvement depends upon a carefully nur-
tured apprenticeship n the development of all the skills and understanding that
must precede deductive geometry. As Wirszup has written. **The teacher’s role
in this apprenticeship includes choosing materials that can orient students toward
becoming familiar with geometrie structures, organizing conversation so that the
structures can be uncovered, using customary terms once the structures have been
uncovered, assigning tasks that can be carried out in different ways so that stu-
dents can orient themselves freely , and finally guiding the students to integration
by helping them to condense to a whole the domain their thought has explored ™
(27, p. 83)

Conclusion

In essence, Wirszup 15 underlining the essential role that the teacher plays in
geometry nstructon, a role that can be made a bit less weighty by some of the
very good matenals that are available for classroom use In the category of text-
books that aim toward complementing deductive geometry as outlined above are
Hoffer's Geometry, A Model of the Universe (9) and Coxford and Usiskin's Ge-
ometry. A Transformation Approach (4). 1f teachers use other textbooks, there are
several sources of ideas and activities that will enrich the teaching of deductive’
geometry. Hart's report on the CSMS study (7) contains a series of exercises in
transformation geometry, as does the National Council of Teachers of Mathe-
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matcs (NCTM) yearbook on the teaching of geoméltry (8). Krause's Tavicab Ge-
ometry (16) and the NCTM's A Sourcebook of Applications of School Mathematics
(11) are both excellent sources of ideas for enriching geometry instruction.

One final source of support for teachers deserves me*ion, namely. the ex-
citing potential of nmucrocomputer software for improving the lcaming of geom-
etry. In particular, the nucrocomputer could prove to be the best bridge yet between
the spatial-visual aspects of geometry and the logico-deductive aspects Kan-
towski has explored this potential w the context of describing several programs
she and her colleagues have developed. (12, 13)

One program shows students a polygon, with anywhere from three to seven
sides. By mampulatng the computer controls, the students can rotate. reflect, or
translate the polygon on.the screen to make it match the orientation of a second.
identical polygon. In the course of their manipulation, the students must tackie
such concepts as angle. parallel lines, and so on.

In the second program, the computer was programmed to ist. at certain points
during geometric proof, scveral categories from which a student could choose the
type of information desired. For example, at cach decision point, the student can
choose 1o see a relevant diagram or a list of relevant theorems and definitions. The
hints are provided by the computer, but the choice is the student’s and he or she
must leam what kinds of mformation will help the most at various points in a proof

There 15 no doubt that lugh school geometry has been suffering through a pe-
riod of the doldrums. The research and development activities described in this
report have opened up the very real possibility that gecometry will once again be-
come an exciting subject to learn and an exciting subject to teach.
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THE PATH TO FORMAL PROOF




Constructing proaofs is a very difficult task for many of my
students. They can’t even get started on most proofs. How can |
help them to analyze a question or problem well enough to
discover a starting point for a proof?

On one level of learmng. the role of proof is clear. it is the fundamental tool
for extending the field of mathematics. Yet few secondary level students aspire
tobe mathematicians. so educators have had to search elsew here to define a role
for proof 1 secondary school mathematics. In varying degrees since the time of
Euchd. proof has been touted as « means to discipline the mind to think in an or-
derly tashton, as ¢ velicle Jor improving logical thinking, and s a stimulus to-
ward the hind of responsible, critical and reflective thinking that should be the
mainstay of democratic life. R

Today s secondary school teachers are ashing pressing questions about the role
of proof 1n the mathematies curriculum. Where, for example. should proof be
taught m the curniculum? How tied should it be to the teaching of geometry” How
can we motvate the many students we face who are reluctant to learn how to
construct proofs? Do shalls in proof-construction carry over to other mathemati-
cal thinking skalls? Do they transfer to non-mathematical subject areas”

Research has shed some light on these issues, and this report reviews the re- - :
sults that have a direct bearing on the mathematics classroom and on the respon-
sibthty of the mathematies teacher. That responsibility is threefold. to induce
students to apprecate the value of proof, to teach them what a proof is. how to
follow one. and how to distinguish proof from non-proot, and. to help stadents
develop skills in proof construction.

In general terms, proof ts the process of reasoning from a set of premises
through a series of connected inferences to a conclusion. in such a way that any
doubt about the conclusion must be referred back to the premises, ruther than to
the Togical necessity of the mferences. In mathematicy there are five major meth-
ods of proof. direct proof (starting with proposition P, a chainof **If . . then”
mnferences arrives at proposition Q. so P implies QJ: prouf by nse of the contra-
posthive (showing that the negation of proposition Q implies the negation of
proposition P 1s equivalent to showing P implies Q), reductio ad absurdun (as-
suming that P does not imply Q will often produce a logical absurdity. thus as-
surtng that P implics Q). proof by emuneration (in certain cases it is possible to
prove & proposition by enumerating the instances it encompasses). tinally. proof
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by extstenge (somu propusitions assett the existence of a mathematical phenom-
enon or situation under certamn condiuons, and proof entails the construction of
that phenomienon or situation). (13) Besides these five methods of proof in math-
emancs, there are tvo methods of disproof: disproof by contradiction (10 show
that under certain dssumptions & proposition is not true, it is often possible to show
that the truth of the proposttion would lead to a logical contradiction of one or
more of the assumptions) and disproof by counterexample (10 disprove a propo-
siton 1t suffices to find one example that satisfies the conditions of the proposi-
tion but not its conclusion), .

. Each of these methods of proof and disproof appears in secondary level
mathematics, yet mathematics teachers should take nothing for granted about their
students” understanding of the use of these methods or even about their acceépt-
ance of the need to use them. Discussions about cach ofi these methods gppear in
(1) and (4). The book by Baxandall et al. (1) also contains many examples of the
use of these methods, especially in the contexts in which they appear in the upper
secondary grades and in the first years of coliege mathematics.

Students and Proof

.

Most students come neither quickly nor natwrally to the use of mathematical
proof. The unrushed pace of cognitive development limits the ability of most
children.to reason hypothetically or deductively untjl they are between 13 and 15
years of age. Even then, apparently, many have litte to appeal to in their txpe-
rience when they face mathematical proof. Williams surveyed eleventh graders
and found that fewer than 30 percent exhibited any understanding of the meaning
of proof 1n mathematics. that approximately 60 percent were unwilling to argue,
for the sake of argument, from any hypothesis they considered false, and that there
was **no evidence that high school students understand that a mathematical state-
ment and its contrapositive are eguivalent.” (19, p. 166) (For example. the fol-
lowing two statements are equivalent, with the second the contrapositive of the
first: **If a four-sided figure 15 a rectangle. then its diagonals dre congruent. el
the diagonals of a four-sided figure are not congruent. then it is not a rectan-
gle."") Obviously, then, many secondary students are limited by their cognitive
development, by their lack of prerequisite understanding, and by their lack of ex-
perience. In order o understand why so many students have difficuity with proof.
1t 1s essential to 1solate developmental limitations and the ways in which they make
themselves known, to detetmine the nature of prerequisite understanding, and to
isolate those misconceptions about proof that are more social in nature and are

. due to inexperience, LI

H @

Cognitive Development .

For an extensive treatment of cognitive development we refer you to the chapter
~Individual Differences 1n Secondary School Mathematics ™ The present chap-
ter 1s hmited to the implications of development for children’s abilities to under-

-
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stand and construct provfs, To that end, 1t suffices t point out that during the period
between ages 13 and 135--carher for some children, later for others--children pass
from the stage calied by many desclopmental psychologists concrete operational
thinking, when their thinhing s almost completely tied to their pereeptions., to the
stage of formal uperaonal thinking, when they can begin to think hypotheti-
cally and deductively, to hold more than one variable in mind at a time, and to
think about their thinkig. In one research study a group of secondary students
was given the following exercise. Al successful scientists work hard. and Mr

Smuth ts a scientst who works hard. Can we say from this that Mr. Smith is a
successful scienust?” About 25 percent of the fourteen-year-olds who responded
to this questiot answered *“yes, " and nearly 20 percent answered “'no.” but gave
apoor reason for thewr “'no™ answer. (13) Commenting on this, Lovell remarked
3 that although 1t 15 not mpossible for concrete operational jndividuals to solve this
hind of exeraise, 1t does not lend wself to imaging very casily— that is. the set of
scientists who work hard but are not successful is never mentioned and an image
of that set does not arse very readily from a reading of the problem. Thus, the
exercise beconies very dif ficult for students whose thinking is still tied to sensory
perception. .

In several of ity logic exercises the recent National Assessment of Educa-
uonal Progress (NAEP) underscored the role of cognitive development in suc-
cessful deductive thinking by revealing that the jump in performance between the
9-year-olds and the 13-year-olds tends to be much greater than the jump between
the 13-year-olds and the 17-year-olds. (3) In particular, on an example similar in
structure to the one used by Lovell in his experiment— "Every flyer is ¢razy. Chris
1y crazy ' —a correcteonclusion that there is not sufficient information to decide
whether Chris 1 a flyer was reached by 25, 51, and 38 pereent. respectively, of
e 9-, 13-, and [7-ycar-olds, It is noteworthy that so many of the 17-ycar-olds—
nwore than 40 percent- were not able to de.ace the appropriate answer,

Reys and Grouws looked at one parucular topic where many students are
challenged to understand a proof before they have developed to the stage of for-
mal operations. namely. division by zero. (15) One recommended way for teach-
ers to approach a question bhe “"Whatis 6 divided by 07" is to remind students
- of theclose relatonship between multiplication and division: 4 ¥ 3 = 12& 12

~ 4 = 3. Thus, for arelated pair of statements like 3 X O =62 0= 6 + 3,
the same number. in this case 2. fits in both squares. Since 0 x O =6 =0 =
6 — 0are related statements and since the left statement has no solution (0 times
any number is 0), there is no solution for the right statement, cither.

This 15 the hind of reasoning students must understand in order to understand
why 6 = 0 = ?has no solution. In their testing and intervicwing of fourth, sixth,
and eighth-graders, Reys and Grouws found that an understanding of such rea-
sonmng required a facdity with translating back and forth from multiplication to

. division and an understanding of zsro as a number. Furthermore. the logic and
symbolism :nvolved i the proof make cognitive development a factor the more
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cogmtvely mature students are. the greater are their chances of deducing that di-
vision by zere has no solution. * .

Belt points out that a chuld’s path to formal proof begins with carly attempts
at making and establishing geueralizations, Children can recognize patterns and
relationshups, even extend and describe thent, but they cannot justify or deduce
them. (2) Often the generakzittions are unreasonable, too. In the research study
descnbed by Lovell. secondary level students were presented with a version of
the famous. and unprosen, Goldbach Conjecture: Every even number can be ex-
pressed as the sum of two prime numbers. The students avere told to study the
following list:

2=1+1 10=35+3

4=3+1 12=7+5

6=3+3 4=7+7 )

§-5+3 16=11+5 .
(and so on. to 16 instances concluding with 32 = 3 + 29) C

They were then asked. **Do these facts show that every even number can be put
as the sum of two prume numbers?™ Approximately "9 percent of the students in
the 14- to 15-year old range answered. in effect. *"Yes, enough evidence,” To
Lovell. there data mplied that many of the students in this age range have not
fully developed the deductive thinking skills that could prevent such hasty and
unexamined gencializations. (13)

Oddly enough; although many secondary level students have & tendency o
jump too quickly from patterns to generalizations, it is also common for adoles-
cets to 1gnore the conclusions they could draw from counterexamples. Galbraith
reports a study 1 which students. most of whom were between 13 and 15 years

for predictng which whole numbers have the property that the sum of their digits
are divisible by 7 (for exampic. 43, 70, 383). (6) Brenda's nule was: *Every number
with this property can be found by adding 9 to the previous number. You start with
7. When the students were alerted to a counicrexample to Beenda's rule (fOr ex- N
ample. 59 has the property but 50 does nou). approximately one-third of the stu- '
dents did not see the significance of the counterexample in refuting Brendas rule.
As one student said: *Could.be a freak accident—one in a milhoa chance,™
In the years before children can fully take hold of formal proving skills. other
developmental tactors can affect their progress. For example. verbal and writing
skills have a bearing on proof skills. Lester remarks: “An examination of re-
scarch involving the logical-reasoning abilitics of young children reveals that these
abihities may be supenor to their ability to put an argument in written form.™ (11,
p. 15) And Hoffer warns, **Precise formulations may be thrust on students before
they are ready-—before they have an opportunity to describe concepts themselves
and recognize the lack of precision in their statements.”” (8. p. 12)
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Levels of Prerequisite Concepts and Skills

Most students have litte experience with deductive proof before high school
geometry. Even then, many lack the prerequisite skills and conceptual under-
standing that would pernut them to understand and use formal deductive proofs
Several rescarch studies have attempted to delincate those prerequisites for de-

'ductlvcyroof. and one result of those efforts is the van Hiele model of the levels

of mental development in geometry, a model named after the Dutch researchers
who first hypothesized it.

According to the model, all children progress through several levels of geo-
metric understanding, ard the van Hieles have claimed that a combination of time,
content, and teaching methods will carry cach child from one level to the level
following it. As described by Hoffer (8), the proposed levels are:

Level 1. -Recogniiion, The student learus some vocabulary and recognizes
1 shape as a whole. For exampie, at this level a student wiil recognize a
prcture of a rectangie but usually won't be aware of many propertics of
rectangies, such as parallel opposite sides. o
Level 2. Analysis, The student analyzes propertics of figures. At this level
a student may realize that the opposite sides of a rectangle are paraliel and
congruent. but will not yet notice how.rectangles refate to squares or right
. triangles. .

Level 3. Ordering. The student can logically order geometric figures (for
example, all squares ar¢ rectangles. but not all rectangies are squares), and
understands interrelationships between figures and the importance of ac-
curate definitions. .

Deductive thinking skills are not fully developed at this level., Al-
though students at this level may be able to understand the relationship of
the class of squares to the class of rectangies . and the relationship of the
latter o the class of parallclograms, they may not be able to deduce why
the diagonals of-a rectangie arc congrucnt. ‘

Wirszup has described how deductive thinking begins to take shape at
level 3. As students collect the visual properties of various shapes, the
growing collection asks for organization. and that is the start of deductive
thinking, (200
Level 4. Deduction. The student understands the signiticance of deduc-
tion and the role of postulates, theorems, and proof.

At this level students will be able to use postulates to prove statements

about rectangiés and triangles., but this thinking may lack enough rigor for
them to understand why the postulates are necessary. ’
Level 5, Rigor. The student understands the importance of precision in
dealing with foundations, such as the collection of axioms and postulates
4t the foundation of Euclidean geometry. This is a level of sophisticated
thinking rarely reached by nigh school students.
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Ustshin and Senk wonducted a study of several thousand kigh school geom-
etry students to determine what changes 1n van Hiele levels take place during the
year of geometry, and W determine how well the van Hicle levels of students en-
wring high school geometry can predict the level of their proof skills at the end
of their year wn geometry. (17, 18) In order to make these determinations, the re-
searchers began by determuung how many of the students fitthe van Hiele model
and, ol thuse who did, what their levely were. About three-quarters of the stu-
Jdents fit the model, Remarkably, over one-haif of those students were at Level |
or below. The following are two examples of the questions asked:

“Level 1:'Which of these are triangles?

OV N

(A) None of these are triangles.

(B) V only «

(C) W only )
(Dy W and X only v :

(E) V and W only .

&
Level 3. What do all rectangles have that some parallelograms do not have?

#
¢

(A) opposite sides equal
(B) diagonals equal

(C) opposite sides parailel
(D) opposite angles equal
(E) none of (A)-(D)

S

The study determined that during the year of geometry , more than 50 percent
of the students at the Tow est level moved to Levels 2 or 3, but that about a third
of them rematned at Level 1. (18) Furthermore, the study found that after a full
year of a geometry course with proof, only about haif of the students could do
more than sumple proofs. (17) Finally, as a predictor of how well students would
do with proof after a year-long geometry course, the van Hiele model proved to
be somewhat successful. Inparticular, it appears that if a student enters geometry
at Level 1 or below, there s littie chance of success with proof. Level 2 implies
4 better than even chance of success, and Level 3 and above imply a good like-
lihood of success. (17, 18) )

So far, the van Hicle model shows great pronlise as a tool for delincating the
sktlls and conceptual understanding that must precede students” work with for-
mal deductive proof. Furthe. research must sharpen the delfincation and also identify
the classroum activities that are most appropriate for cach level (Hoffer’s article

L
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(8) proposes some geomehy acvitics for cach Ievel and interested teachers can
refer to it.)

The research cited so far has made it clear that many adolescents contend with
a vartety of obstacles to the iearning of the rules of formal proof:

e ah mabihity to thmk hypothetcally or to express their reasoning in writ-

ing.

e alack of clanty about the equivalence of a mathematical statement and

its contrapositive. : v

e  anunwillingness to aceept the conclusive evidence presented by a coun-

terexample.

e atendency to generalize too quickly from recognized patlerns.

0/ a lack of prerequisite skills and conceptual understanding.

There are other obstacles. two. In his rescarch report. Galbraith noted a tend-
ency of many adolescents to focus on only part of the statement of a proposition,
and tendencics as well to change the conditions of a proposition to suit the direc-
non of therr own thinking or even to be subjective in their assessment of a proof
(**Maybe Breiida.didn’t mean to say ‘every’.”) (6) '

it 1s important for teachers to note that incxperience is also bound to affecta
young person's work with proof. For much of their lives, adolescents have at-
tempted to win arguments primarily on subjective grounds. Bell pointed to this
mfhience of inexpenence and the role of the teacher in dealing with it when he
sardls 1t follows . . . that pupils will not use formal proof with appreciation of
its purpose unul they arc aware of the public status of knowledge and the value
of pubhe venfication. The most potent accelerator towards achic vement of this is
hikely to be cooperatve. research-type activity by the class. In this, investigation
of a situation would-lead to different conjectures by different pupils, and the res-
olution of conflicts by arguments and evidence.” (2. p.25) 0

i

The Teacher and Proof

Perhaps the most extensive attempt (¢ create the kind of classroom experi-
ence which Beli recommends was Faweett's classic teaching experiment during
the ninetecn-thirties. (5) The experiment lasted two years and drew much of its
hfe from Fawcett's conviction that, with appropriate guidance, secondary stu-
dents can learn to think critically, reflectively, and deductively, and can fearn to
apply that thinking both to mathematics and to nonmathematical arcas as well. The
subject arca was geometry, the teaching method mostly nondirective. The stu-
dents were frequently and consistently chalienged to develop, through argument
and group agrecment. their own system of geometric definitions, axioms and
theorems—in fact, their own textbook. For example, the following question is
typical of the teacher challenges to the class: ‘
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Assume that angle a = angle a’. What are the resulting impheations?

Note that the question doesn’t lead the students to any particular implication.
When the students began to list implications, however, the teacher made them
exanune, debate, and justify cach on the basts of presious, work, and then t in-
corporate the implications they derived into their textbook.

Fawcett's account of the experiment is the 13th ycarbook of the National
Council of Teachers of Mathemauces, The Nuture of Prouf. It 1s very readable and
mnterested teachers should refer to 1t for a complete prcture of the experiment. At
the end of the two years the experimental students scored higher than students in
traditional lasses on a state geometry exanunation and both the eaxperimentdl
students and their parents claimed that the students” deductive thinking had im-
praved n nonmathematical situations. Perhaps the most important vutcome to
Fawcett, however, was the proliferaton n the experimentat class of the behay-
wrs he considered characteristic of students who understand proof and the value ,

4 of proof and which can sull serve as beacons t any teacher of mathemetics (3.
p-1in 8

I. They will sclect the significant words and phrases in any statements that
are important to them and ask that they be carefully defined.

. They will require evidence wn support of any conclusions they are pressed
to accept. )

3. They will analyze that evidence and distinguish fact from assumption.

4. They will recognize stated and unstated assumptions essential to the con-
clusions, .

. They will evaluate those assumptions, accepting some and rejecting oth-
ers.

6. They will evaludte the arguments, accepting or rejecting the conclusions.

. They will constantly re-examine the assumiptions which are behind their
belief’s and which guide their actions.

to

wn

There are ways in which mathematics teachers can incorporate Fawcett's list
intv their own teavhing vbjectives without investing in @ two-year cormitment.
First. as much as possible, they should model the hind of reasoring they want from
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their students. In their study of seventh-graders’ logical reasoning skills. Gregory
and Osborne found a gh correlation between the frequency of teachers” use of
condittonal reasonng (e.g.. "'If . . then™" sentences) and the conditional reason-
g skills of the students. (7)

Second. teachers should think aloud while attacking problems and construct-
g proofs. They should also create opportunities for students to think aloud In
tins way both teacher and student can examine the student's thinking--assump-
wons. use of evidence. the depth and comprehensiveness of criticism Four of the
weven behaviors on Faweett's hist concern assumptions, and at least one rescarch
study has made 1t apparent that the assumptions many students bring to formal proof
need amrng and adjustment. In that study, reported by Lovell. attention was fo-
cused on the development of the coneept of proof. When asked **What do we mean
by an hypothesis?"" . more than 20 percent of the students between the ages of 16
and 18 gave answers such as. an hypothesis is a true statenient; an untruc state-
ment, a proved statement, a statcment that cannot be proved. (13) With assump-
tons ke those it 15 no wonder so many students have trouble with formal proof’!
Whether the topic for discussion 1s a particular mathematical proof or the process
of proot wself. stadents need to be made aware of their own assumptions and those
ot others. That can only be done through regular classroom discussions among
students. discussions that are guided by the teacher.

The theme of student involvement was at the heart of a study by Libeskind
(12) The study centered on a short course in number theory for students from graces
9 through 1 1. Using study booklets and a sequence of mastery tests. the research-
ers gwded the students through 25 hour-long sessions. The rescarchers’ main fo-
cus was the effectiveness of the heuristic teaching of proof, whereby the teacher
d-;esn’t Just appeal 20 axioms or previous results in the course of developing a.proof.
but shows why 1t 15 reasonable to start a particular proof in one way and not an-
other. how one knows the way to proceed from one step to the next, and what
alternative strategies there might be for developing a particular proof.

The researchers guaranteed students” involvement by asking them to suggest
what the next step in a particular proof might be. The students wrote their sug-
gestions 1 their notebooks and a step was adopted only if more than half of the
students suggested 1t. Furthermore. to discourage memorization the students were
required to write proofs n several forms: the traditional two-column form. a story
(sentence-paragraph) form, and a diagram forn. So-called ¢~ flow proofs’ are ex-
amples of a diagram form and interested teachers can refer to McMurray. (14)

Nine students completed the course in Libeskind's study and all reached the
mastery level. In particular. during the coursc the students developed the ability
to reproduce proofs even though they had been discouraged from memorizing, the
ability to recogmze 1f a proof was valid. and the ability to apply the methods they
had learned to prove statements they had not seen before. Libeskind concluded
that the mvolvement of the students through the heuristic approach was central to
their success.
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Conclusion .

It should be evident by now that beconung proficient at mathematical proof
demands more than just a single shall. In fact, 1t appears to be the outgrowth of a
nuixed set uf skills. habits. and attitudes, encompassing alertness o assumptions,
listening to and evaludting arguments. recognizing patterns but also recognizing
when a pattern has not been extended to o fir proof, and both the abiity and the
willingness to think hypothetically.

One other aspect of proof should not be 1gnored. A formal proof is usually a
series of statements, but skills in proving are born 1n the asking of questions
Juestions that allow vne to analy ze 4 concept o1 situation, to examine it from var-
ous vantage points, and o gather data about . In one series of experiments, stxth
and seventh grade. students were tramned for a year in a program of classroom
learning called the Inquiry Method. (16) The method was used manly in suience
classes, where students were shown events that tended to contradict precon-
ceived notions. such as the Targer of two blocks of wood floaung in a liquid while
the smaller piece sinks o the bottom. The students’ task was to ask the teacher
questions, answerable by ““yes™ or “*no'’, until they felt they could explain why
everything in a particular expenment had happened the way it did. Five years later,
the researchers compared the Inquiry Method students with a comparable group
of students who had not been exposed to the method. The inquiry -trained stu-
dents were sigmficantly more analytical than the other students, and were better
in mathematics. During interviews, the inquiry-trair2d students made the con
neeion between the year's training and their later expenience with proofs in ge-
ometry. As the rescarchers reported. " Apparently techniques suggested in the
strate gy sessions, such as thinking of a “start, middle, and end’ to an experiment,
getung “alt’ the facts, or asking “precise” questions, were the kinds of things to
which the students referred in the questonpaire that were internalized and re-
taned during the five years between the teaching regime and this investgation. ™
(16. p. 142)

Some rescarchers see the microcomputer as a potential source of a similar kind
of inquiry tramning. To do a geometnie proof, for example, students must mahe a
sertes of deuisiuns about the hinds of information they need. visual information,
hnown thevrems and related results, ete, Researchers are investigating the effects
of building into microcomputer programs the capacity to respond to 4 student’s
request for more nformation. In one project, for example, the computer was pro-
grammed (0 bist, at certain points during a geometric proof, several categories from
which the student could choose the type of information desired. (9) The hints came
from the computer. but the direction of the hints came from the student.

In a sinular vewn, Knst conducted a study with students in grades 11 and 12,
using ¢ curmnculun designed to be augmented by the programmable calculator. One
of the major conclustons of the study was that calculators can contribute to build-
g a bridge between the formal proof of basic theorems and students; under-
standing and acceptance of those basic theorems. (10)




computers. the path to formal proof has
dents. What has changed is out picture of the path, which is clearer now than it
ever has been 1n tts delimeaton of the skills that underlic formal proof and in the
portrayal of obstacles t0 learning formal proof. In particular, we have a clearer
picture of which obstacles are developmental in nature and which are not, and what
“strategies are available to teachers who face these obstacles in the teaching of

The Path 1o Proof

expennient 1 the 19307s to the use of calculators and micro-
not changed for secondary school stu-
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